Как убрать повторные наблюдения при объединении наборов данных - PullRequest
0 голосов
/ 18 мая 2018

Я пытаюсь рассчитать количество времени между испытаниями (trialnumber) для каждого человека (sq_id).Мне удалось выяснить, как рассчитать разницу во времени между испытаниями (time_gap), но в моем выводе есть все эти дублирующиеся строки, которых там быть не должно.

Можно найти подмножество моих данных здесь .В целях воспроизводимости я включил набор данных (называемый export) ниже:

sq_id  ageclass sex cohort year age grid trialnumber trialdate trialtime
6244         A   F   2000 2005   5   AG           1  05/24/05      0:00
10212        A   M   2006 2008   2   KL           1  05/04/08      6:13
10212        A   M   2006 2010   4   KL           4  05/20/10      6:12
10212        A   M   2006 2009   3   KL           2  06/10/09      6:14
10212        A   M   2006 2009   3   KL           3  07/01/09      6:15
23052        J   F   2017 2017   0   SU           2  08/02/17     11:00
23052        J   F   2017 2017   0   SU           1  07/20/17     10:51
23080        J   M   2017 2017   0   KL           2  07/29/17     10:20
23080        J   M   2017 2017   0   KL           1  07/07/17      8:35

Первое, что я сделал, это вычислил время между испытаниями, например:

#adding time between trials to data
trialdate<-as.POSIXct(data$trialdate,format="%m/%d/%y")
data$datetime=as.POSIXct(paste(trialdate, data$trialtime),format= '%Y-%m-%d',usetz=FALSE)

#calculates time btw first trial and all other trials
timebtw <- data %>% group_by(sq_id) %>% 
    select(sq_id, trialnumber, datetime) %>%
    mutate(time_gap = (datetime - nth(datetime, which.min((datetime)))), time_gap=time_gap/86400) #time_gap units are in seconds, changed to days

Затем я присоединяю набор данных timebtw к своему исходному набору данных (называемому export):

new<-dplyr::left_join(export, timebtw, by = "sq_id") 

Вывод, который я получаю, выглядит так:

> export
sq_id ageclass sex cohort year age grid trialnumber.x trialdate trialtime   datetime time_gap trialnumber.y
6244         A   F   2000 2005   5   AG             1  05/24/05      0:00 2005-05-24   0 secs             1
10212        A   M   2006 2008   2   KL             1  05/04/08      6:13 2008-05-04   0 secs             1
10212        A   M   2006 2008   2   KL             1  05/04/08      6:13 2008-05-04 746 secs             4
10212        A   M   2006 2008   2   KL             1  05/04/08      6:13 2008-05-04 402 secs             2
10212        A   M   2006 2008   2   KL             1  05/04/08      6:13 2008-05-04 423 secs             3
10212        A   M   2006 2010   4   KL             4  05/20/10      6:12 2010-05-20   0 secs             1
10212        A   M   2006 2010   4   KL             4  05/20/10      6:12 2010-05-20 746 secs             4
10212        A   M   2006 2010   4   KL             4  05/20/10      6:12 2010-05-20 402 secs             2
10212        A   M   2006 2010   4   KL             4  05/20/10      6:12 2010-05-20 423 secs             3
10212        A   M   2006 2009   3   KL             2  06/10/09      6:14 2009-06-10   0 secs             1
10212        A   M   2006 2009   3   KL             2  06/10/09      6:14 2009-06-10 746 secs             4
10212        A   M   2006 2009   3   KL             2  06/10/09      6:14 2009-06-10 402 secs             2
10212        A   M   2006 2009   3   KL             2  06/10/09      6:14 2009-06-10 423 secs             3
10212        A   M   2006 2009   3   KL             3  07/01/09      6:15 2009-07-01   0 secs             1
10212        A   M   2006 2009   3   KL             3  07/01/09      6:15 2009-07-01 746 secs             4
10212        A   M   2006 2009   3   KL             3  07/01/09      6:15 2009-07-01 402 secs             2
10212        A   M   2006 2009   3   KL             3  07/01/09      6:15 2009-07-01 423 secs             3
23052        J   F   2017 2017   0   SU             2  08/02/17     11:00 2017-08-02  13 secs             2
23052        J   F   2017 2017   0   SU             2  08/02/17     11:00 2017-08-02   0 secs             1
23052        J   F   2017 2017   0   SU             1  07/20/17     10:51 2017-07-20  13 secs             2
23052        J   F   2017 2017   0   SU             1  07/20/17     10:51 2017-07-20   0 secs             1
23080        J   M   2017 2017   0   KL             2  07/29/17     10:20 2017-07-29  22 secs             2
23080        J   M   2017 2017   0   KL             2  07/29/17     10:20 2017-07-29   0 secs             1
23080        J   M   2017 2017   0   KL             1  07/07/17      8:35 2017-07-07  22 secs             2
23080        J   M   2017 2017   0   KL             1  07/07/17      8:35 2017-07-07   0 secs             1

Это проблема.Должно быть только одно значение time_gap на trialnumber.

Так, например, для sq_id 10212 вывод должен выглядеть следующим образом:

sq_id ageclass sex cohort year age grid trialnumber.x trialdate trialtime   datetime time_gap trialnumber.y
10212        A   M   2006 2008   2   KL             1  05/04/08      6:13 2008-05-04   0 secs             1
10212        A   M   2006 2010   4   KL             4  05/20/10      6:12 2010-05-20 746 secs             4
10212        A   M   2006 2009   3   KL             2  06/10/09      6:14 2009-06-10 402 secs             2
10212        A   M   2006 2009   3   KL             3  07/01/09      6:15 2009-07-01 423 secs             3

Мне нужны столбцы trialnumber.x и trialnumber.y, чтобы соответствовать, таким образомстрок столько, сколько имеется испытаний (т. е. sq_id 6244 будет иметь 1 строку, sq_id 10212 4 строки, sq_id 23052 2 строки и sq_id 23080 2 строки).

Кто-нибудь знает, как я могу изменить свой код, чтобы получить этот вывод?

1 Ответ

0 голосов
/ 18 мая 2018
library(dplyr)

dat <- readr::read_table(
"sq_id  ageclass sex cohort year age grid trialnumber trialdate trialtime
6244         A   F   2000 2005   5   AG           1  05/24/05      0:00
10212        A   M   2006 2008   2   KL           1  05/04/08      6:13
10212        A   M   2006 2010   4   KL           4  05/20/10      6:12
10212        A   M   2006 2009   3   KL           2  06/10/09      6:14
10212        A   M   2006 2009   3   KL           3  07/01/09      6:15
23052        J   F   2017 2017   0   SU           2  08/02/17     11:00
23052        J   F   2017 2017   0   SU           1  07/20/17     10:51
23080        J   M   2017 2017   0   KL           2  07/29/17     10:20
23080        J   M   2017 2017   0   KL           1  07/07/17      8:35")
glimpse(dat)

# Observations: 9
# Variables: 9
# $ sq_id         <int> 6244, 10212, 10212, 10212, 10212, 23052, 23052, 23080, 23080
# $ ageclass      <chr> "A", "A", "A", "A", "A", "J", "J", "J", "J"
# $ sex           <chr> "F", "M", "M", "M", "M", "F", "F", "M", "M"
# $ `cohort year` <chr> "2000 2005", "2006 2008", "2006 2010", "2006 2009", "2006 2009", "2017 2017", "2017 2017",...
# $ age           <int> 5, 2, 4, 3, 3, 0, 0, 0, 0
# $ grid          <chr> "AG", "KL", "KL", "KL", "KL", "SU", "SU", "KL", "KL"
# $ trialnumber   <int> 1, 1, 4, 2, 3, 2, 1, 2, 1
# $ trialdate     <chr> "05/24/05", "05/04/08", "05/20/10", "06/10/09", "07/01/09", "08/02/17", "07/20/17", "07/29...
# $ trialtime     <time> 00:00:00, 06:13:00, 06:12:00, 06:14:00, 06:15:00, 11:00:00, 10:51:00, 10:20:00, 08:35:00

Кажется, нет необходимости отдельно рассчитывать промежутки времени, поэтому нет необходимости присоединяться:

dat %>% 
  mutate(trial_dt = lubridate::mdy_hms(paste(trialdate, trialtime))) %>% 
  group_by(sq_id) %>% 
  mutate(time_gap = difftime(trial_dt, min(trial_dt), units = "days"))

# # A tibble: 9 x 11
# # Groups:   sq_id [4]
#   sq_id ageclass sex   `cohort year`   age grid  trialnumber trialdate trialtime trial_dt            time_gap        
#   <int> <chr>    <chr> <chr>         <int> <chr>       <int> <chr>     <time>    <dttm>              <time>          
# 1  6244 A        F     2000 2005         5 AG              1 05/24/05  00:00     2005-05-24 00:00:00 0               
# 2 10212 A        M     2006 2008         2 KL              1 05/04/08  06:13     2008-05-04 06:13:00 0               
# 3 10212 A        M     2006 2010         4 KL              4 05/20/10  06:12     2010-05-20 06:12:00 745.999305555556
# 4 10212 A        M     2006 2009         3 KL              2 06/10/09  06:14     2009-06-10 06:14:00 402.000694444444
# 5 10212 A        M     2006 2009         3 KL              3 07/01/09  06:15     2009-07-01 06:15:00 423.001388888889
# 6 23052 J        F     2017 2017         0 SU              2 08/02/17  11:00     2017-08-02 11:00:00 13.00625        
# 7 23052 J        F     2017 2017         0 SU              1 07/20/17  10:51     2017-07-20 10:51:00 0               
# 8 23080 J        M     2017 2017         0 KL              2 07/29/17  10:20     2017-07-29 10:20:00 22.0729166666667
# 9 23080 J        M     2017 2017         0 KL              1 07/07/17  08:35     2017-07-07 08:35:00 0  
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...