реализация дерева бинарного поиска javascript - PullRequest
14 голосов
/ 26 августа 2009

Кто-нибудь знает какие-нибудь хорошие примеры простой реализации BTree в Javascript? У меня есть куча «вещей», поступающих случайным образом, и я хочу вставить каждое из них эффективно.

В конечном итоге каждый новый будет вставлен в DOM в зависимости от того, где он окажется в дереве.

Я могу написать это с нуля, но не буду изобретать колеса.

спасибо

Ответы [ 5 ]

13 голосов
/ 26 августа 2009

Если это имеет значение, я обнаружил, что хранение данных такого типа в виде литерального дерева было менее эффективным, чем сохранение их в виде уже отсортированного массива и выполнение двоичного поиска в массиве для объединения / вставки элементов. Создание JavaScript-объекта не является бесплатным, по-видимому.

Есть также старый трюк кодирования дерева в массиве:

[5, 3, 7, 1, null, 6, 9, null, null, null, null, null, null] 

совпадает с

      5
     / \
    3   7
   /   / \
  1   6   9

т.е. дети (N [i]) = N [2i + 1], N [2i + 2]. Я не знаю, дает ли это вам хоть какую-то победу в JavaScript.

Если вы попробуете какие-то альтернативы бинарному дереву, не могли бы вы опубликовать свои результаты здесь? :)

10 голосов
/ 10 февраля 2015

https://gist.github.com/alexhawkins/f993569424789f3be5db

function BinarySearchTree() {
    this.root = null;
}

BinarySearchTree.prototype.makeNode = function(value) {
    var node = {};
    node.value = value;
    node.left = null;
    node.right = null;
    return node;
};

BinarySearchTree.prototype.add = function(value) {
    var currentNode = this.makeNode(value);
    if (!this.root) {
        this.root = currentNode;
    } else {
        this.insert(currentNode);
    }
    return this;
};

BinarySearchTree.prototype.insert = function(currentNode) {
    var value = currentNode.value;
    var traverse = function(node) {
        //if value is equal to the value of the node, ignore
        //and exit function since we don't want duplicates
        if (value === node.value) {
            return;
        } else if (value > node.value) {
            if (!node.right) {
                node.right = currentNode;
                return;
            } else
                traverse(node.right);
        } else if (value < node.value) {
            if (!node.left) {
                node.left = currentNode;
                return;
            } else
                traverse(node.left);
        }
    };
    traverse(this.root);
};


BinarySearchTree.prototype.contains = function(value) {
    var node = this.root;
    var traverse = function(node) {
        if (!node) return false;
        if (value === node.value) {
            return true;
        } else if (value > node.value) {
            return traverse(node.right);
        } else if (value < node.value) {
            return traverse(node.left);
        }
    };
    return traverse(node);
};


/* BREADTH FIRST TREE TRAVERSAL */

/* Breadth First Search finds all the siblings at each level
   in order from left to right or from right to left. */

BinarySearchTree.prototype.breadthFirstLTR = function() {
    var node = this.root;
    var queue = [node];
    var result = [];
    while (node = queue.shift()) {
        result.push(node.value);
        node.left && queue.push(node.left);
        node.right && queue.push(node.right);
    }
    return result;
};


BinarySearchTree.prototype.breadthFirstRTL = function() {
    var node = this.root;
    var queue = [node];
    var result = [];
    while (node = queue.shift()) {
        result.push(node.value);
        node.right && queue.push(node.right);
        node.left && queue.push(node.left);
    }
    return result;
};

/*DEPTH FIRST TRAVERSALS*/

/*  preOrder is a type of depth-first traversal that tries 
    togo deeper in the tree before exploring siblings. It 
    returns the shallowest descendants first.

    1) Display the data part of root element (or current element)
    2) Traverse the left subtree by recursively calling the pre-order function.
    3) Traverse the right subtree by recursively calling the pre-order function. */

BinarySearchTree.prototype.preOrder = function() {
    var result = [];
    var node = this.root;
    var traverse = function(node) {
        result.push(node.value);
        node.left && traverse(node.left);
        node.right && traverse(node.right);
    };
    traverse(node);
    return result;
};

/*  inOrder traversal is a type of depth-first traversal
    that also tries to go deeper in the tree before exploring siblings.
    however, it returns the deepest descendents first

    1) Traverse the left subtree by recursively calling the pre-order function.
    2) Display the data part of root element (or current element)
    3) Traverse the right subtree by recursively calling the pre-order function. */

BinarySearchTree.prototype.inOrder = function() {
    var result = [];
    var node = this.root;
    var traverse = function(node) {
        node.left && traverse(node.left);
        result.push(node.value);
        node.right && traverse(node.right);
    };
    traverse(node);
    return result;
};

/*  postOrder traversal is a type of depth-first traversal
    that also tries to go deeper in the tree before exploring siblings.
    however, it returns the deepest descendents first

    1) Traverse the left subtree by recursively calling the pre-order function.
    2) Display the data part of root element (or current element)
    3) Traverse the right subtree by recursively calling the pre-order function. */


BinarySearchTree.prototype.postOrder = function() {
    var result = [];
    var node = this.root;
    var traverse = function(node) {
        node.left && traverse(node.left);
        node.right && traverse(node.right);
        result.push(node.value);
    };
    traverse(node);
    return result;
};

//find the left most node to find the min value of a binary tree;
BinarySearchTree.prototype.findMin = function() {
    var node = this.root;
    var traverse = function(node) {
        return !node.left ? node.value : traverse(node.left);
    };
    return traverse(node);
};

//find the right most node to find the max value of a binary tree;
BinarySearchTree.prototype.findMax = function() {
    var node = this.root;
    var traverse = function(node) {
        return !node.right ? node.value : traverse(node.right);
    };
    return traverse(node);
};


BinarySearchTree.prototype.getDepth = function() {
    var node = this.root;
    var maxDepth = 0;
    var traverse = function(node, depth) {
        if (!node) return null;
        if (node) {
            maxDepth = depth > maxDepth ? depth : maxDepth;
            traverse(node.left, depth + 1);
            traverse(node.right, depth + 1);
        }
    };
    traverse(node, 0);
    return maxDepth;
};


//Can you write me a function that returns all the averages of the nodes 
//at each level (or depth)?? with breadth-first traversal


BinarySearchTree.prototype.nodeAverages = function() {
    var node = this.root;
    var result = {};
    var depthAverages = [];

    var traverse = function(node, depth) {
        if (!node) return null;
        if (node) {
            if (!result[depth])
                result[depth] = [node.value];
            else
                result[depth].push(node.value);
        }
        //check to see if node is a leaf, depth stays the same if it is
        //otherwise increment depth for possible right and left nodes
        if (node.right || node.left) {
            traverse(node.left, depth + 1);
            traverse(node.right, depth + 1);
        }
    };
    traverse(node, 0);

    //get averages and breadthFirst
    for (var key in result) {
        var len = result[key].length;
        var depthAvg = 0;
        for (var i = 0; i < len; i++) {
            depthAvg += result[key][i];
        }
        depthAverages.push(Number((depthAvg / len).toFixed(2)));
    }
    return depthAverages;
};

//Convert a binary search tree to a linked-list in place. 
//In-order depth-first traversal.
function LinkedList() {
    this.head = null;
}

BinarySearchTree.prototype.convertToLinkedList = function() {

    var result = [];
    var node = this.root;
    if (!node) return null;

    var traverse = function(node) {
        node.left && traverse(node.left);
        result.push(node.value);
        node.right && traverse(node.right);
    };

    traverse(node);

    var makeNode = function(value) {
        var node = {};
        node.value = value;
        node.next = null;
        return node;
    };

    var list = new LinkedList();
    list.head = makeNode(result[0]);
    var current = list.head;

    for (var i = 1; i < result.length; i++) {
        var currentNode = makeNode(result[i]);
        current.next = currentNode;
        current = current.next;
    }
    return list;
};

//TESTS

var bst = new BinarySearchTree();
bst.add(40).add(25).add(78).add(10).add(32);
console.log('BS1', bst);

var bst2 = new BinarySearchTree();
bst2.add(10).add(20).add(30).add(5).add(8).add(3).add(9);
console.log('BST2', bst2);
console.log('BREADTHFIRST LTR', bst2.breadthFirstLTR());
console.log('BREADTHFIRST RTL', bst2.breadthFirstRTL());
console.log('PREORDER', bst2.preOrder());
console.log('INORDER', bst2.inOrder());
console.log('POSTORDER', bst2.postOrder());

/* 
BREADTHFIRST LTR [ 10, 5, 20, 3, 8, 30, 9 ]
BREADTHFIRST RTL [ 10, 20, 5, 30, 8, 3, 9 ]
PREORDER [ 10, 5, 3, 8, 9, 20, 30 ]
INORDER [ 3, 5, 8, 9, 10, 20, 30 ]
POSTORDER [ 3, 9, 8, 5, 30, 20, 10 ]
*/

var bst3 = new BinarySearchTree();
bst3.add('j').add('f').add('k').add('z').add('a').add('h').add('d');
console.log(bst3);
console.log('BREADTHFIRST LTR', bst3.breadthFirstLTR());
console.log('BREADTHFIRST RTL', bst3.breadthFirstRTL());
console.log('PREORDER', bst3.preOrder());
console.log('INORDER', bst3.inOrder());
console.log('POSTORDER', bst3.postOrder());

/*
BREADTHFIRST LTR [ 'j', 'f', 'k', 'a', 'h', 'z', 'd' ]
BREADTHFIRST RTL [ 'j', 'k', 'f', 'z', 'h', 'a', 'd' ]
PREORDER [ 'j', 'f', 'a', 'd', 'h', 'k', 'z' ]
INORDER [ 'a', 'd', 'f', 'h', 'j', 'k', 'z' ]
POSTORDER [ 'd', 'a', 'h', 'f', 'z', 'k', 'j' ]
 */


console.log(bst2.findMin()); // 3
console.log(bst2.findMax()); // 30
console.log(bst2.contains(15));
//bst2.add(55);
//bst2.add(65);
//bst3.add(75);
console.log(bst2);
console.log(bst2.getDepth()); // 3
console.log(bst2.add(7).add(50).add(80).add(98));
console.log(bst2.getDepth()); // 5
console.log(bst2.nodeAverages()); //[ 10, 12.5, 13.67, 22, 80, 98 ]

console.log(bst2.convertToLinkedList());
//[ 3, 5, 7, 8, 9, 10, 20, 30, 50, 80, 98 ]
//{ head: { value: 3, next: { value: 5, next: [Object] } } }
8 голосов
/ 26 августа 2009
2 голосов
/ 03 февраля 2012

Вы можете попробовать buckets , библиотеку javascript, в ней есть все необходимое.

0 голосов
/ 16 июня 2016

Двоичные поисковые деревья обычно известны как BST - особый тип деревьев, которые сортируются в природе. В бинарном дереве поиска каждый узел больше своего левого потомка и меньше своего правого потомка. Эта функция облегчает поиск, вставку и удаление узла из двоичного дерева поиска.

Algo

// Проверка, является ли корневой узел пустым или нет

// Если да, тогда назначить новый узел root

// Если нет, то итерация. Метод Iterate проверит значение узла, добавляемое слева и справа от текущего обрабатывающего узла.

// если добавляемое значение узла меньше, чем значение узла, которое перемещается на левого потомка

// Если левый дочерний узел пуст, чем назначить новый узел этому левому дочернему узлу

// еще вызовите метод итерации

// Если значение добавляемого узла больше значения узла, чем перейти к правому дочернему элементу

// Если правый дочерний узел пуст, тогда назначить новый узел этому правому дочернему узлу

// еще вызовите метод итерации

Если это поможет, вы можете найти полную статью здесь Бинарное дерево поиска Вставка узла Реализация в Javascript

...