Почему memcpy работает медленно в 32-битном режиме с gcc -march = native на Ryzen для больших буферов? - PullRequest
0 голосов
/ 19 мая 2018

Я написал простой тест (код внизу), чтобы оценить производительность memcpy в моей 64-битной системе Debian.В моей системе, когда она скомпилирована как 64-битный двоичный файл, это дает согласованные значения 38-40 ГБ / с для всех размеров блоков.Однако при сборке в виде 32-разрядного двоичного файла в одной и той же системе производительность копирования крайне мала.

Я написал свою собственную реализацию memcpy в ассемблере, которая использует SIMD, способную соответствовать 64-разрядной производительности.Я искренне шокирован тем, что мой собственный memcpy намного быстрее, чем нативный, конечно, что-то должно быть не так с 32-битной сборкой libc.

32-битные результаты теста memcpy

0x00100000 B, 0.034215 ms, 29227.06 MB/s (16384 iterations)
0x00200000 B, 0.033453 ms, 29892.56 MB/s ( 8192 iterations)
0x00300000 B, 0.048710 ms, 20529.48 MB/s ( 5461 iterations)
0x00400000 B, 0.049187 ms, 20330.54 MB/s ( 4096 iterations)
0x00500000 B, 0.058945 ms, 16965.01 MB/s ( 3276 iterations)
0x00600000 B, 0.060735 ms, 16465.01 MB/s ( 2730 iterations)
0x00700000 B, 0.068973 ms, 14498.34 MB/s ( 2340 iterations)
0x00800000 B, 0.078325 ms, 12767.34 MB/s ( 2048 iterations)
0x00900000 B, 0.099801 ms, 10019.92 MB/s ( 1820 iterations)
0x00a00000 B, 0.111160 ms,  8996.04 MB/s ( 1638 iterations)
0x00b00000 B, 0.120044 ms,  8330.31 MB/s ( 1489 iterations)
0x00c00000 B, 0.116506 ms,  8583.26 MB/s ( 1365 iterations)
0x00d00000 B, 0.120322 ms,  8311.06 MB/s ( 1260 iterations)
0x00e00000 B, 0.114424 ms,  8739.40 MB/s ( 1170 iterations)
0x00f00000 B, 0.128843 ms,  7761.37 MB/s ( 1092 iterations)
0x01000000 B, 0.118122 ms,  8465.85 MB/s ( 1024 iterations)
0x08000000 B, 0.140218 ms,  7131.76 MB/s (  128 iterations)
0x10000000 B, 0.115596 ms,  8650.85 MB/s (   64 iterations)
0x20000000 B, 0.115325 ms,  8671.16 MB/s (   32 iterations)

64битовый результат теста memcpy

0x00100000 B, 0.022237 ms, 44970.48 MB/s (16384 iterations)
0x00200000 B, 0.022293 ms, 44856.77 MB/s ( 8192 iterations)
0x00300000 B, 0.021729 ms, 46022.49 MB/s ( 5461 iterations)
0x00400000 B, 0.028348 ms, 35275.28 MB/s ( 4096 iterations)
0x00500000 B, 0.026118 ms, 38288.08 MB/s ( 3276 iterations)
0x00600000 B, 0.026161 ms, 38225.15 MB/s ( 2730 iterations)
0x00700000 B, 0.026199 ms, 38169.68 MB/s ( 2340 iterations)
0x00800000 B, 0.026236 ms, 38116.22 MB/s ( 2048 iterations)
0x00900000 B, 0.026090 ms, 38329.50 MB/s ( 1820 iterations)
0x00a00000 B, 0.026085 ms, 38336.39 MB/s ( 1638 iterations)
0x00b00000 B, 0.026079 ms, 38345.59 MB/s ( 1489 iterations)
0x00c00000 B, 0.026147 ms, 38245.75 MB/s ( 1365 iterations)
0x00d00000 B, 0.026033 ms, 38412.69 MB/s ( 1260 iterations)
0x00e00000 B, 0.026037 ms, 38407.40 MB/s ( 1170 iterations)
0x00f00000 B, 0.026019 ms, 38433.80 MB/s ( 1092 iterations)
0x01000000 B, 0.026041 ms, 38401.61 MB/s ( 1024 iterations)
0x08000000 B, 0.026123 ms, 38280.89 MB/s (  128 iterations)
0x10000000 B, 0.026083 ms, 38338.70 MB/s (   64 iterations)
0x20000000 B, 0.026116 ms, 38290.93 MB/s (   32 iterations)

пользовательский 32-битный memcpy

0x00100000 B, 0.026807 ms, 37303.21 MB/s (16384 iterations)
0x00200000 B, 0.026500 ms, 37735.59 MB/s ( 8192 iterations)
0x00300000 B, 0.026810 ms, 37300.04 MB/s ( 5461 iterations)
0x00400000 B, 0.026214 ms, 38148.05 MB/s ( 4096 iterations)
0x00500000 B, 0.026738 ms, 37399.74 MB/s ( 3276 iterations)
0x00600000 B, 0.026035 ms, 38409.15 MB/s ( 2730 iterations)
0x00700000 B, 0.026262 ms, 38077.29 MB/s ( 2340 iterations)
0x00800000 B, 0.026190 ms, 38183.00 MB/s ( 2048 iterations)
0x00900000 B, 0.026287 ms, 38042.18 MB/s ( 1820 iterations)
0x00a00000 B, 0.026263 ms, 38076.66 MB/s ( 1638 iterations)
0x00b00000 B, 0.026162 ms, 38223.48 MB/s ( 1489 iterations)
0x00c00000 B, 0.026189 ms, 38183.45 MB/s ( 1365 iterations)
0x00d00000 B, 0.026012 ms, 38444.52 MB/s ( 1260 iterations)
0x00e00000 B, 0.026089 ms, 38330.05 MB/s ( 1170 iterations)
0x00f00000 B, 0.026373 ms, 37917.10 MB/s ( 1092 iterations)
0x01000000 B, 0.026304 ms, 38016.85 MB/s ( 1024 iterations)
0x08000000 B, 0.025958 ms, 38523.59 MB/s (  128 iterations)
0x10000000 B, 0.025992 ms, 38473.84 MB/s (   64 iterations)
0x20000000 B, 0.026020 ms, 38431.96 MB/s (   32 iterations)

Тестовая программа

(компилируется с: gcc -m32 -march=native -O3)

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <stdint.h>
#include <malloc.h>

static inline uint64_t nanotime()
{
  struct timespec time;
  clock_gettime(CLOCK_MONOTONIC_RAW, &time);
  return ((uint64_t)time.tv_sec * 1e9) + time.tv_nsec;
}

void test(const int size)
{
  char * buffer1 = memalign(128, size);
  char * buffer2 = memalign(128, size);

  for(int i = 0; i < size; ++i)
    buffer2[i] = i;

  uint64_t t           = nanotime();
  const uint64_t loops = (16384LL * 1048576LL) / size;
  for(uint64_t i = 0; i < loops; ++i)
    memcpy(buffer1, buffer2, size);
  double ms = (((float)(nanotime() - t) / loops) / 1000000.0f) / (size / 1024 / 1024);
  printf("0x%08x B, %8.6f ms, %8.2f MB/s (%5llu iterations)\n", size, ms, 1000.0 / ms, loops);

  // prevent the compiler from trying to optimize out the copy
  if (buffer1[0] == 0x0)
    return;

  free(buffer1);
  free(buffer2);
}

int main(int argc, char * argv[])
{
  for(int i = 0; i < 16; ++i)
    test((i+1) * 1024 * 1024);

  test(128 * 1024 * 1024);
  test(256 * 1024 * 1024);
  test(512 * 1024 * 1024);
  return 0;
}

Редактировать

  • Протестировано на Ryzen 7 и ThreadRipper 1950x
  • glibc: 2.27
  • gcc: 7.3.0

perfрезультаты:

  99.68%  x32.n.bin  x32.n.bin          [.] test
   0.28%  x32.n.bin  [kernel.kallsyms]  [k] clear_page_rep
   0.01%  x32.n.bin  [kernel.kallsyms]  [k] get_page_from_freelist
   0.01%  x32.n.bin  [kernel.kallsyms]  [k] __mod_node_page_state
   0.01%  x32.n.bin  [kernel.kallsyms]  [k] page_fault
   0.00%  x32.n.bin  [kernel.kallsyms]  [k] default_send_IPI_single
   0.00%  perf_4.17  [kernel.kallsyms]  [k] __x86_indirect_thunk_r14

пользовательская реализация SSE

inline static void memcpySSE(void *dst, const void * src, size_t length)
{
#if (defined(__x86_64__) || defined(__i386__))
  if (length == 0 || dst == src)
    return;

#ifdef __x86_64__
  const void * end = dst + (length & ~0xFF);
  size_t off = (15 - ((length & 0xFF) >> 4));
  off = (off < 8) ? off * 16 : 7 * 16 + (off - 7) * 10;
#else
  const void * end = dst + (length & ~0x7F);
  const size_t off = (7 - ((length & 0x7F) >> 4)) * 10;
#endif

#ifdef __x86_64__
  #define REG "rax"
#else
  #define REG "eax"
#endif

  __asm__ __volatile__ (
   "cmp         %[dst],%[end] \n\t"
   "je          Remain_%= \n\t"

   // perform SIMD block copy
   "loop_%=: \n\t"
   "vmovaps     0x00(%[src]),%%xmm0  \n\t"
   "vmovaps     0x10(%[src]),%%xmm1  \n\t"
   "vmovaps     0x20(%[src]),%%xmm2  \n\t"
   "vmovaps     0x30(%[src]),%%xmm3  \n\t"
   "vmovaps     0x40(%[src]),%%xmm4  \n\t"
   "vmovaps     0x50(%[src]),%%xmm5  \n\t"
   "vmovaps     0x60(%[src]),%%xmm6  \n\t"
   "vmovaps     0x70(%[src]),%%xmm7  \n\t"
#ifdef __x86_64__
   "vmovaps     0x80(%[src]),%%xmm8  \n\t"
   "vmovaps     0x90(%[src]),%%xmm9  \n\t"
   "vmovaps     0xA0(%[src]),%%xmm10 \n\t"
   "vmovaps     0xB0(%[src]),%%xmm11 \n\t"
   "vmovaps     0xC0(%[src]),%%xmm12 \n\t"
   "vmovaps     0xD0(%[src]),%%xmm13 \n\t"
   "vmovaps     0xE0(%[src]),%%xmm14 \n\t"
   "vmovaps     0xF0(%[src]),%%xmm15 \n\t"
#endif
   "vmovntdq    %%xmm0 ,0x00(%[dst]) \n\t"
   "vmovntdq    %%xmm1 ,0x10(%[dst]) \n\t"
   "vmovntdq    %%xmm2 ,0x20(%[dst]) \n\t"
   "vmovntdq    %%xmm3 ,0x30(%[dst]) \n\t"
   "vmovntdq    %%xmm4 ,0x40(%[dst]) \n\t"
   "vmovntdq    %%xmm5 ,0x50(%[dst]) \n\t"
   "vmovntdq    %%xmm6 ,0x60(%[dst]) \n\t"
   "vmovntdq    %%xmm7 ,0x70(%[dst]) \n\t"
#ifdef __x86_64__
   "vmovntdq    %%xmm8 ,0x80(%[dst]) \n\t"
   "vmovntdq    %%xmm9 ,0x90(%[dst]) \n\t"
   "vmovntdq    %%xmm10,0xA0(%[dst]) \n\t"
   "vmovntdq    %%xmm11,0xB0(%[dst]) \n\t"
   "vmovntdq    %%xmm12,0xC0(%[dst]) \n\t"
   "vmovntdq    %%xmm13,0xD0(%[dst]) \n\t"
   "vmovntdq    %%xmm14,0xE0(%[dst]) \n\t"
   "vmovntdq    %%xmm15,0xF0(%[dst]) \n\t"

   "add         $0x100,%[dst] \n\t"
   "add         $0x100,%[src] \n\t"
#else
   "add         $0x80,%[dst] \n\t"
   "add         $0x80,%[src] \n\t"
#endif
   "cmp         %[dst],%[end] \n\t"
   "jne         loop_%= \n\t"

   "Remain_%=: \n\t"

   // copy any remaining 16 byte blocks
#ifdef __x86_64__
   "leaq        (%%rip), %%rax\n\t"
#else
   "call        GetPC_%=\n\t"
#endif
   "Offset_%=:\n\t"
   "add         $(BlockTable_%= - Offset_%=), %%" REG "\n\t"
   "add         %[off],%%" REG " \n\t"
   "jmp         *%%" REG " \n\t"

#ifdef __i386__
  "GetPC_%=:\n\t"
  "mov (%%esp), %%eax \n\t"
  "ret \n\t"
#endif

   "BlockTable_%=:\n\t"
#ifdef __x86_64__
   "vmovaps     0xE0(%[src]),%%xmm14 \n\t"
   "vmovntdq    %%xmm14,0xE0(%[dst]) \n\t"
   "vmovaps     0xD0(%[src]),%%xmm13 \n\t"
   "vmovntdq    %%xmm13,0xD0(%[dst]) \n\t"
   "vmovaps     0xC0(%[src]),%%xmm12 \n\t"
   "vmovntdq    %%xmm12,0xC0(%[dst]) \n\t"
   "vmovaps     0xB0(%[src]),%%xmm11 \n\t"
   "vmovntdq    %%xmm11,0xB0(%[dst]) \n\t"
   "vmovaps     0xA0(%[src]),%%xmm10 \n\t"
   "vmovntdq    %%xmm10,0xA0(%[dst]) \n\t"
   "vmovaps     0x90(%[src]),%%xmm9  \n\t"
   "vmovntdq    %%xmm9 ,0x90(%[dst]) \n\t"
   "vmovaps     0x80(%[src]),%%xmm8  \n\t"
   "vmovntdq    %%xmm8 ,0x80(%[dst]) \n\t"
   "vmovaps     0x70(%[src]),%%xmm7  \n\t"
   "vmovntdq    %%xmm7 ,0x70(%[dst]) \n\t"
#endif
   "vmovaps     0x60(%[src]),%%xmm6  \n\t"
   "vmovntdq    %%xmm6 ,0x60(%[dst]) \n\t"
   "vmovaps     0x50(%[src]),%%xmm5  \n\t"
   "vmovntdq    %%xmm5 ,0x50(%[dst]) \n\t"
   "vmovaps     0x40(%[src]),%%xmm4  \n\t"
   "vmovntdq    %%xmm4 ,0x40(%[dst]) \n\t"
   "vmovaps     0x30(%[src]),%%xmm3  \n\t"
   "vmovntdq    %%xmm3 ,0x30(%[dst]) \n\t"
   "vmovaps     0x20(%[src]),%%xmm2  \n\t"
   "vmovntdq    %%xmm2 ,0x20(%[dst]) \n\t"
   "vmovaps     0x10(%[src]),%%xmm1  \n\t"
   "vmovntdq    %%xmm1 ,0x10(%[dst]) \n\t"
   "vmovaps     0x00(%[src]),%%xmm0  \n\t"
   "vmovntdq    %%xmm0 ,0x00(%[dst]) \n\t"
   "nop\n\t"
   "nop\n\t"

   : [dst]"+r" (dst),
     [src]"+r" (src)
   : [off]"r"  (off),
     [end]"r"  (end)
   : REG,
     "xmm0",
     "xmm1",
     "xmm2",
     "xmm3",
     "xmm4",
     "xmm5",
     "xmm6",
     "xmm7",
#ifdef __x86_64__
     "xmm8",
     "xmm9",
     "xmm10",
     "xmm11",
     "xmm12",
     "xmm13",
     "xmm14",
     "xmm15",
#endif
     "memory"
  );

#undef REG

  //copy any remaining bytes
  for(size_t i = (length & 0xF); i; --i)
    ((uint8_t *)dst)[length - i] =
      ((uint8_t *)src)[length - i];
#else
  memcpy(dst, src, length);
#endif
}

нативная memcpy с -O3 -m32 -march=znver1

  cmp ebx, 4
  jb .L56
  mov ecx, DWORD PTR [ebp+0]
  lea edi, [eax+4]
  mov esi, ebp
  and edi, -4
  mov DWORD PTR [eax], ecx
  mov ecx, DWORD PTR [ebp-4+ebx]
  mov DWORD PTR [eax-4+ebx], ecx
  mov ecx, eax
  sub ecx, edi
  sub esi, ecx
  add ecx, ebx
  shr ecx, 2
  rep movsd
  jmp .L14

Ответы [ 2 ]

0 голосов
/ 19 мая 2018

Может ли быть, что debian libc-i386 не скомпилирован с поддержкой SSE? ... Подтверждено, objdump показывает, что SSE не используется в встроенной memcpy.

GCC обрабатывает memcpy как встроенный, если вы не используете -fno-builtin-memcpy;как вы видели из perf, ни одна реализация asm в libc.so даже не вызывается.(И gcc не может встроить код из библиотеки shared . Заголовки glibc имеют только прототип, а не реализацию inline-asm.)

Вставка memcpy как rep movsбыла просто идея GCC , с gcc -O3 -m32 -march=znver1.(И ОП сообщает , что -fno-builtin-memcpy ускорил этот микробенчмарк, так что, по-видимому, рукописная реализация asm в glibc - это хорошо. Это ожидаемо; она, вероятно, примерно такая же, как 64-битная, и не пользуетсяболее 8 регистров XMM или YMM.)

Я бы настоятельно рекомендовал против с использованием -fno-builtin-memcpy в целом, хотя , потому что вы определенно хотите, чтобы gcc был встроенным memcpy для таких вещей, как float foo; int32_t bar; memcpy(&foo, &bar, sizeof(foo));.Или другие небольшие случаи фиксированного размера, когда он может быть встроен как один вектор загрузки / сохранения.Вы определенно хотите, чтобы gcc понимал, что memcpy просто копирует память, и не рассматривал ее как непрозрачную функцию.

Долгосрочное решение для gcc - не встроить memcpy как rep movs в Zen;очевидно, это не очень хорошее решение для настройки, когда копии могут быть большими.ИДК, если это хорошо для маленьких копий;Intel имеет значительные накладные расходы при запуске.

Краткосрочное решение состоит в том, чтобы вручную вызывать ваш пользовательский memcpy (или как-то вызывать не встроенный glibc memcpy) для копий, которые, как вы знаете, обычно большие, но позвольте gcc использовать его встроенный для другихслучаев.Сверхъестественным способом было бы использовать -fno-builtin-memcpy и затем использовать __builtin_memcpy вместо memcpy для маленьких копий.


Похоже, для больших буферов, rep movs не великана Ryzen по сравнению с магазинами NT.В Intel я думаю, что rep movs должен использовать протокол без RFO, подобный хранилищам NT, но, возможно, AMD отличается.

Расширенный REP MOVSB ​​для memcpy упоминает только Intel, нов нем есть некоторые сведения о том, что пропускная способность ограничена задержкой памяти / L3 и максимальным параллелизмом, а не фактическими ограничениями пропускной способности контроллера DRAM.


Кстати, проверяет ли ваша пользовательская версия пороговое значение размера, прежде чем использоватьNT магазины?NT хранит отстой для небольших и средних буферов, если данные будут перезагружены сразу же;он должен прийти из DRAM, а не из L1d.

0 голосов
/ 19 мая 2018

Я предполагаю, что это может быть какая-то проблема с кэшем ЦП .Помните , что доступ к данным в кеше L1 более чем в сто раз быстрее, чем доступ к данным в вашем модуле DRAM.

Первый раз любой memcpy (ваш или системные)называется, он вносит в кэш (и, вероятно, даже в кэш-памяти L1) эту зону памяти.И блочная копия имеет максимальную локальность.

Вы должны изменить свой код так, чтобы он вызывал несколько раз то же memcpy в той же зоне памятии измерить самое высокое и самое низкое (и среднее) время этих memcpy.Вы будете удивлены.

В противном случае mempcy может быть каким-то builtin_memcpy волшебным образом известным компилятором GCC или какой-либо функцией, предоставляемой вашим libc.И ваш компилятор, и GNU libc являются свободными программами , так что вы можете изучить их исходный код.Вы также можете попробовать другой libc, например musl-libc и другой компилятор, например Clang / LLVM .И вы также можете изучить ассемблерный код, созданный (с gcc -S -O3 -fverbose-asm) вашим компилятором.

Наконец, 44 Гбайт / с против 29 Гбайт / с не ИМХО пропасть разница.

...