Случай AVX2 256-битной перестановки
Я не думаю, что можно написать эффективный универсальный алгоритм SSE4 / AVX2 / AVX-512, который работает для всех векторных размеров (128,256, 512 бит) и гранулярность элементов (биты, пары битов, полубайты, байты).Одна проблема состоит в том, что многие инструкции AVX2, которые существуют, например, для элементов размера байта, не существуют для элементов двойного слова, и наоборот.
Ниже обсуждается случай 256-битной перестановки AVX2.Можно было бы использовать идеи этого случая для других случаев.
Идея состоит в том, чтобы извлечь 32 (переставленных) бита за шаг из входного вектора x
.На каждом шаге считывается 32 байта из вектора перестановок pos
.Биты 7..3 из этих pos
байтов определяют, какой байт из x
необходим.Правый байт выбирается с помощью эмулируемой перестановки байтов AVX2 шириной 256 битов , закодированной здесь Ermlg .Биты 2..0 из pos
байтов определяют, какой бит ищется.При _mm256_movemask_epi8
32 бита собираются в один _uint32_t
Этот шаг повторяется 8 раз, чтобы получить все 256 переставленных битов.
Код выглядит не очень элегантно.Тем не менее, я был бы удивлен, если бы существовал значительно более быстрый, скажем, в два раза, метод AVX2.
/* gcc -O3 -m64 -Wall -mavx2 -march=skylake bitperm_avx2.c */
#include <immintrin.h>
#include <stdio.h>
#include <stdint.h>
inline __m256i shuf_epi8_lc(__m256i value, __m256i shuffle);
int print_epi64(__m256i a);
uint32_t get_32_bits(__m256i x, __m256i pos){
__m256i pshufb_mask = _mm256_set_epi8(0,0,0,0, 0,0,0,0, 128,64,32,16, 8,4,2,1, 0,0,0,0, 0,0,0,0, 128,64,32,16, 8,4,2,1);
__m256i byte_pos = _mm256_srli_epi32(pos, 3); /* which byte within the 32 bytes */
byte_pos = _mm256_and_si256(byte_pos, _mm256_set1_epi8(0x1F)); /* mask off the unwanted bits */
__m256i bit_pos = _mm256_and_si256(pos, _mm256_set1_epi8(0x07)); /* which bit within the byte */
__m256i bit_pos_mask = _mm256_shuffle_epi8(pshufb_mask, bit_pos); /* get bit mask */
__m256i bytes_wanted = shuf_epi8_lc(x, byte_pos); /* get the right bytes */
__m256i bits_wanted = _mm256_and_si256(bit_pos_mask, bytes_wanted); /* apply the bit mask to get rid of the unwanted bits within the byte */
__m256i bits_x8 = _mm256_cmpeq_epi8(bits_wanted, bit_pos_mask); /* check if the bit is set */
return _mm256_movemask_epi8(bits_x8);
}
__m256i get_256_bits(__m256i x, uint8_t* pos){ /* glue the 32 bit results together */
uint64_t t0 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[0]));
uint64_t t1 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[32]));
uint64_t t2 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[64]));
uint64_t t3 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[96]));
uint64_t t4 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[128]));
uint64_t t5 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[160]));
uint64_t t6 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[192]));
uint64_t t7 = get_32_bits(x, _mm256_loadu_si256((__m256i*)&pos[224]));
uint64_t t10 = (t1<<32)|t0;
uint64_t t32 = (t3<<32)|t2;
uint64_t t54 = (t5<<32)|t4;
uint64_t t76 = (t7<<32)|t6;
return(_mm256_set_epi64x(t76, t54, t32, t10));
}
inline __m256i shuf_epi8_lc(__m256i value, __m256i shuffle){
/* Ermlg's lane crossing byte shuffle https://stackoverflow.com/a/30669632/2439725 */
const __m256i K0 = _mm256_setr_epi8(
0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70,
0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0);
const __m256i K1 = _mm256_setr_epi8(
0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0,
0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70);
return _mm256_or_si256(_mm256_shuffle_epi8(value, _mm256_add_epi8(shuffle, K0)),
_mm256_shuffle_epi8(_mm256_permute4x64_epi64(value, 0x4E), _mm256_add_epi8(shuffle, K1)));
}
int main(){
__m256i input = _mm256_set_epi16(0x1234,0x9876,0x7890,0xABCD, 0x3456,0x7654,0x0123,0x4567,
0x0123,0x4567,0x89AB,0xCDEF, 0xFEDC,0xBA98,0x7654,0x3210);
/* Example */
/* 240 224 208 192 176 160 144 128 112 96 80 64 48 32 16 0 */
/* input 1234 9876 7890 ABCD | 3456 7654 0123 4567 | 0123 4567 89AB CDEF | FEDC BA98 7654 3210 */
/* output 0000 0000 0012 00FF | 90AB 3210 7654 ABCD | 8712 1200 FF90 AB32 | 7654 ABCD 1087 7654 */
uint8_t permutation[256] = {16,17,18,19, 20,21,22,23, 24,25,26,27, 28,29,30,31,
28,29,30,31, 32,33,34,35, 0,1,2,3, 4,5,6,7,
72,73,74,75, 76,77,78,79, 80,81,82,83, 84,85,86,87,
160,161,162,163, 164,165,166,167, 168,169,170,171, 172,173,174,175,
8,9,10,11, 12,13,14,15, 200,201,202,203, 204,205,206,207,
208,209,210,211, 212,213,214,215, 215,215,215,215, 215,215,215,215,
1,1,1,1, 1,1,1,1, 248,249,250,251, 252,253,254,255,
248,249,250,251, 252,253,254,255, 28,29,30,31, 32,33,34,35,
72,73,74,75, 76,77,78,79, 80,81,82,83, 84,85,86,87,
160,161,162,163, 164,165,166,167, 168,169,170,171, 172,173,174,175,
0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15,
200,201,202,203, 204,205,206,207, 208,209,210,211, 212,213,214,215,
215,215,215,215, 215,215,215,215, 1,1,1,1, 1,1,1,1,
248,249,250,251, 252,253,254,255, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1};
printf("input = \n");
print_epi64(input);
__m256i x = get_256_bits(input, permutation);
printf("permuted input = \n");
print_epi64(x);
return 0;
}
int print_epi64(__m256i a){
uint64_t v[4];
int i;
_mm256_storeu_si256((__m256i*)v,a);
for (i = 3; i>=0; i--) printf("%016lX ",v[i]);
printf("\n");
return 0;
}
Вывод с примером перестановки выглядит правильно:
$ ./a.out
input =
123498767890ABCD 3456765401234567 0123456789ABCDEF FEDCBA9876543210
permuted input =
00000000001200FF 90AB32107654ABCD 87121200FF90AB32 7654ABCD10877654
Эффективность
Если вы внимательно посмотрите на алгоритм, вы увидите, что некоторые операции зависят только от вектора перестановки pos
, а не от x
.Это означает, что применение перестановки с переменной x
и фиксированным pos
должно быть более эффективным, чем применение перестановки с обеими переменными x
и pos
.
. Это иллюстрируетсяследующий код:
/* apply the same permutation several times */
int perm_array(__m256i* restrict x_in, uint8_t* restrict pos, __m256i* restrict x_out){
for (int i = 0; i<1024; i++){
x_out[i]=get_256_bits(x_in[i], pos);
}
return 0;
}
С clang и gcc это скомпилируется в действительно хороший код : цикл .L5
в строке 237 содержит только 16 vpshufb
с вместо 24. Кроме того,vpaddb
s подняты из петли.Обратите внимание, что внутри цикла есть только один vpermq
.
Я не знаю, будет ли MSVC выводить такое количество инструкций за пределы цикла.Если нет, то возможно улучшить производительность цикла, изменив код вручную.Это должно быть сделано так, чтобы операции, которые зависят только от pos
, а не от x
, были подняты за пределы цикла.
Относительно производительности на Intel Skylake: пропускная способность этого цикласкорее всего, ограничено примерно 32 микрооперациями порта 5 на каждую итерацию цикла.Это означает, что пропускная способность в контексте цикла, такого как perm_array
, составляет около 256 переставленных битов на 32 цикла ЦП или около 8 переставленных бит на цикл ЦП.
128-битные перестановки с использованием инструкций AVX2
Этот код очень похож на случай 256-битной перестановки.Хотя переставляются только 128 битов, полная 256-битная ширина регистров AVX2 используется для достижения наилучшей производительности.Здесь байтовые тасовки не эмулируются.Это связано с тем, что существует эффективная единая инструкция для перестановки байтов в пределах 128-битных полос: vpshufb
.
Функция perm_array_128
проверяет производительность перестановки битов для фиксированной перестановки и ввода переменной x
.Цикл сборки содержит около 11 портов 5 (p5) микроопераций, если предположить процессор Intel Skylake.Эти 11 микроопераций p5 занимают как минимум 11 циклов ЦП (пропускная способность).Таким образом, в лучшем случае мы получаем пропускную способность около 12 переставленных битов за цикл, что примерно в 1,5 раза быстрее, чем при 256-битной перестановке.
/* gcc -O3 -m64 -Wall -mavx2 -march=skylake bitperm128_avx2.c */
#include <immintrin.h>
#include <stdio.h>
#include <stdint.h>
int print128_epi64(__m128i a);
uint32_t get_32_128_bits(__m256i x, __m256i pos){ /* extract 32 permuted bits out from 2x128 bits */
__m256i pshufb_mask = _mm256_set_epi8(0,0,0,0, 0,0,0,0, 128,64,32,16, 8,4,2,1, 0,0,0,0, 0,0,0,0, 128,64,32,16, 8,4,2,1);
__m256i byte_pos = _mm256_srli_epi32(pos, 3); /* which byte do we need within the 16 byte lanes. bits 6,5,4,3 select the right byte */
byte_pos = _mm256_and_si256(byte_pos, _mm256_set1_epi8(0xF)); /* mask off the unwanted bits (unnecessary if _mm256_srli_epi8 would have existed */
__m256i bit_pos = _mm256_and_si256(pos, _mm256_set1_epi8(0x07)); /* which bit within the byte */
__m256i bit_pos_mask = _mm256_shuffle_epi8(pshufb_mask, bit_pos); /* get bit mask */
__m256i bytes_wanted = _mm256_shuffle_epi8(x, byte_pos); /* get the right bytes */
__m256i bits_wanted = _mm256_and_si256(bit_pos_mask, bytes_wanted); /* apply the bit mask to get rid of the unwanted bits within the byte */
__m256i bits_x8 = _mm256_cmpeq_epi8(bits_wanted, bit_pos_mask); /* set all bits if the wanted bit is set */
return _mm256_movemask_epi8(bits_x8); /* move most significant bit of each byte to 32 bit register */
}
__m128i permute_128_bits(__m128i x, uint8_t* pos){ /* get bit permutations in 32 bit pieces and glue them together */
__m256i x2 = _mm256_broadcastsi128_si256(x); /* broadcast x to the hi and lo lane */
uint64_t t0 = get_32_128_bits(x2, _mm256_loadu_si256((__m256i*)&pos[0]));
uint64_t t1 = get_32_128_bits(x2, _mm256_loadu_si256((__m256i*)&pos[32]));
uint64_t t2 = get_32_128_bits(x2, _mm256_loadu_si256((__m256i*)&pos[64]));
uint64_t t3 = get_32_128_bits(x2, _mm256_loadu_si256((__m256i*)&pos[96]));
uint64_t t10 = (t1<<32)|t0;
uint64_t t32 = (t3<<32)|t2;
return(_mm_set_epi64x(t32, t10));
}
/* Test loop performance with the following loop (see assembly) -> 11 port5 uops inside the critical loop */
/* Use gcc -O3 -m64 -Wall -mavx2 -march=skylake -S bitperm128_avx2.c to generate the assembly */
int perm_array_128(__m128i* restrict x_in, uint8_t* restrict pos, __m128i* restrict x_out){
for (int i = 0; i<1024; i++){
x_out[i]=permute_128_bits(x_in[i], pos);
}
return 0;
}
int main(){
__m128i input = _mm_set_epi16(0x0123,0x4567,0xFEDC,0xBA98, 0x7654,0x3210,0x89AB,0xCDEF);
/* Example */
/* 112 96 80 64 48 32 16 0 */
/* input 0123 4567 FEDC BA98 7654 3210 89AB CDEF */
/* output 8FFF CDEF DCBA 08EF CDFF DCBA EFF0 89AB */
uint8_t permutation[128] = {16,17,18,19, 20,21,22,23, 24,25,26,27, 28,29,30,31,
32,32,32,32, 36,36,36,36, 0,1,2,3, 4,5,6,7,
72,73,74,75, 76,77,78,79, 80,81,82,83, 84,85,86,87,
0,0,0,0, 0,0,0,0, 8,9,10,11, 12,13,14,15,
0,1,2,3, 4,5,6,7, 28,29,30,31, 32,33,34,35,
72,73,74,75, 76,77,78,79, 80,81,82,83, 84,85,86,87,
0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15,
1,1,1,1, 1,1,1,1, 1,1,1,1, 32,32,32,1};
printf("input = \n");
print128_epi64(input);
__m128i x = permute_128_bits(input, permutation);
printf("permuted input = \n");
print128_epi64(x);
return 0;
}
int print128_epi64(__m128i a){
uint64_t v[2];
int i;
_mm_storeu_si128((__m128i*)v,a);
for (i = 1; i>=0; i--) printf("%016lX ",v[i]);
printf("\n");
return 0;
}
Пример вывода для некоторой произвольной перестановки:
$ ./a.out
input =
01234567FEDCBA98 7654321089ABCDEF
permuted input =
8FFFCDEFDCBA08EF CDFFDCBAEFF089AB