Я хотел бы реализовать Генеративные Состязательные Сети, следуя этому руководству
К сожалению, я не знаю, как применить эту часть в моем проекте:
# Only update D(X)'s parameters, so var_list = theta_D
D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D)
# Only update G(X)'s parameters, so var_list = theta_G
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G)
Iу меня более сложная сеть, где слои инициализируются повторно используемыми функциями, и я не могу вручную собрать переменные в theta_D
и theta_G
.
Я поместил слои генератора и дискриминаторав именованные области.Можно ли собрать переменные после построения сети, а затем передать ее в AdamOptimizer().minimize(...)
?
Этот код дает мне пустой результат:
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='discriminator')
Edit
Я попытался вызвать tf.get_collection
внутри именованной области, и я получил некоторые результаты.Но если я заменим theta_G
и theta_D
из кода example этим, модель не сможет выучить:
with tf.name_scope('G_sample'):
G_sample = generator(Z)
theta_G = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
with tf.name_scope('D_real'):
D_real, D_logit_real = discriminator(X)
theta_D = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
Независимо от того, как долго я буду тренироваться,он возвращает шум вместо изображения.Выбраны неправильные переменные, но я понятия не имею, почему
Edit2
Я изменил пример кода в соответствии с ответом vijay m ,Работает без ошибок, но не учится.В результате получается шум.
Полный код:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
def xavier_init(size):
in_dim = size[0]
xavier_stddev = 1. / tf.sqrt(in_dim / 2.)
return tf.random_normal(shape=size, stddev=xavier_stddev)
X = tf.placeholder(tf.float32, shape=[None, 784])
Z = tf.placeholder(tf.float32, shape=[None, 100])
def sample_Z(m, n):
return np.random.uniform(-1., 1., size=[m, n])
def generator(z, reuse=False):
with tf.variable_scope('generator', reuse=reuse):
G_W1 = tf.Variable(xavier_init([100, 128]))
G_b1 = tf.Variable(tf.zeros(shape=[128]))
G_W2 = tf.Variable(xavier_init([128, 784]))
G_b2 = tf.Variable(tf.zeros(shape=[784]))
#
G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1)
G_log_prob = tf.matmul(G_h1, G_W2) + G_b2
G_prob = tf.nn.sigmoid(G_log_prob)
return G_prob
def discriminator(x, reuse=False):
with tf.variable_scope('discriminator', reuse=reuse):
D_W1 = tf.Variable(xavier_init([784, 128]))
D_b1 = tf.Variable(tf.zeros(shape=[128]))
D_W2 = tf.Variable(xavier_init([128, 1]))
D_b2 = tf.Variable(tf.zeros(shape=[1]))
#
D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1)
D_logit = tf.matmul(D_h1, D_W2) + D_b2
D_prob = tf.nn.sigmoid(D_logit)
return D_prob, D_logit
def plot(samples):
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
return fig
G_sample = generator(Z)
D_real, D_logit_real = discriminator(X)
t_vars = tf.trainable_variables()
theta_D = [var for var in t_vars if var.name.startswith('discriminator')]
theta_G = [var for var in t_vars if var.name.startswith('generator')]
D_fake, D_logit_fake = discriminator(G_sample)
# Alternative losses:
# -------------------
D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real)))
D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake)))
D_loss = D_loss_real + D_loss_fake
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake)))
D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D)
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G)
mb_size = 128
Z_dim = 100
mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
if not os.path.exists('out/'):
os.makedirs('out/')
i = 0
for it in range(1000000):
if it % 1000 == 0:
samples = sess.run(G_sample, feed_dict={Z: sample_Z(16, Z_dim)})
fig = plot(samples)
plt.savefig('out/{}.png'.format(str(i).zfill(3)), bbox_inches='tight')
i += 1
plt.close(fig)
X_mb, _ = mnist.train.next_batch(mb_size)
_, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: X_mb, Z: sample_Z(mb_size, Z_dim)})
_, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={Z: sample_Z(mb_size, Z_dim)})
if it % 1000 == 0:
print('Iter: {}'.format(it))
print('D loss: {:.4}'. format(D_loss_curr))
print('G_loss: {:.4}'.format(G_loss_curr))
print()
theta_D:
[<tf.Variable 'discriminator/Variable:0' shape=(784, 128) dtype=float32_ref>, <tf.Variable 'discriminator/Variable_1:0' shape=(128,) dtype=float32_ref>, <tf.Variable 'discriminator/Variable_2:0' shape=(128, 1) dtype=float32_ref>, <tf.Variable 'discriminator/Variable_3:0' shape=(1,) dtype=float32_ref>]
theta_G:
[<tf.Variable 'generator/Variable:0' shape=(100, 128) dtype=float32_ref>, <tf.Variable 'generator/Variable_1:0' shape=(128,) dtype=float32_ref>, <tf.Variable 'generator/Variable_2:0' shape=(128, 784) dtype=float32_ref>, <tf.Variable 'generator/Variable_3:0' shape=(784,) dtype=float32_ref>]