Я создал минимальный рабочий пример шага предварительной обработки изображения, который должен быть перенесен с Caffe v.1 на tenorflow.Я могу воспроизвести шаги, используя PIL + skimage, но я не могу сделать то же самое в тензорном потоке.Как было отмечено, норма L2 между преобразованным изображением в Caffe и тензорным потоком является высокой, что не относится к лыжному образу PIL +.Как мы воспроизводим шаги, которым подвергалось изображение в методах Caffe или PIL с использованием tenorflow?
import tenorflow как tf import numpy как np из PIL import Импорт изображений caffe from skimage.transform import resize запросы на импорт
image_url = 'https://tinyjpg.com/images/social/website.jpg'
TEST_IMAGE = 'test_image.jpg'
DATA_LAYER = 'data_p'
MEAN = np.array([131.26315308, 140.62084961, 142.71440125], dtype=np.float32)
img_data = requests.get(image_url).content
with open(TEST_IMAGE, 'wb') as handler:
handler.write(img_data)
def create_transformer():
transformer = caffe.io.Transformer({DATA_LAYER: (1, 3, 224, 224)})
transformer.set_transpose(DATA_LAYER, (2,0,1))
transformer.set_channel_swap(DATA_LAYER,(2,1,0))
transformer.set_mean(DATA_LAYER, MEAN)
transformer.set_raw_scale(DATA_LAYER, 255)
return transformer
def transform_image_original(test_image):
'''
Creates a caffe.io.Transformer
'''
t = create_transformer()
image_data = Image.fromarray(np.uint8(caffe.io.load_image(TEST_IMAGE) * 255))
input_image = np.array(image_data) / 255.0
transformed_image = t.preprocess(DATA_LAYER, input_image)
return transformed_image
def _resize(im, new_dims,interp_order=1):
im_min, im_max = im.min(), im.max()
if im_max > im_min:
im_std = (im - im_min) / (im_max - im_min)
resized_std = resize(im_std, new_dims, order=interp_order, mode='constant')
resized_im = resized_std * (im_max - im_min) + im_min
return resized_im
def preprocess_image(TEST_IMAGE, height=224, width=224):
'''
replicates the caffe tranformation using PIL and skimage.transform
'''
with open(TEST_IMAGE, 'rb') as f:
image = Image.open(f)
image = image.convert('RGB')
image = np.array(image, np.float32) / 255.0
image = _resize(image, (224, 224))
image = np.array(image, np.float32) * 255.0
import scipy.misc
scipy.misc.imsave('pil_file.jpg', image)
image = np.transpose(image, (2, 0, 1))
image = image[::-1, ...] # convert RGB to BGR
image = image - MEAN.reshape((3, 1, 1))
return image
def tf_preprocess_image(TEST_IMAGE, height=224, width=224):
'''
preprocessing an image in tensorflow
'''
image_string = tf.read_file(TEST_IMAGE)
image = tf.image.decode_jpeg(image_string, channels=3, dct_method='INTEGER_ACCURATE',
fancy_upscaling=False, acceptable_fraction=1, try_recover_truncated=True)
image = tf.to_float(image) / 255
image = tf.div(
tf.subtract(
image,
tf.reduce_min(image)
),
tf.subtract(
tf.reduce_max(image),
tf.reduce_min(image)
)
)
if height and width:
# Resize the image to the specified height and width.
image = tf.expand_dims(image, 0)
image = tf.image.resize_bilinear(image, [height, width],
align_corners=False)
image = tf.squeeze(image, [0])
image = tf.add(
tf.multiply(
image,
tf.subtract(
tf.reduce_max(image),
tf.reduce_min(image)
)
),
tf.reduce_min(image)
)
image = tf.to_float(image) * 255
# RGB to BGR using strided slice
image = image[..., ::-1]
# Channel last to channel first
image = tf.transpose(image, [2, 0, 1])
# Mean subtraction
image = tf.subtract(image, MEAN.reshape(3,1,1))
return image
print('Preprocessing test image using Caffe...')
image = transform_image_original(TEST_IMAGE)
print('Preprocessing test image using PIL + skimage.transform ...')
image2 = preprocess_image(TEST_IMAGE)
print('Preprocessing test image using tensorflow')
with tf.Session() as sess:
tf_image3 = tf_preprocess_image(TEST_IMAGE)
image3 = tf_image3.eval()
print('L2 norm between caffe transformation and PIL + skimage', np.linalg.norm(image - image2)) # L2 norm
print('L2 norm between caffe transformation and tf', np.linalg.norm(image2 - image3))