У меня есть текстовый файл следующим образом:
Sentence:1 Polarity:N 5puan verdim o da anistonun güzel yüzünün hatırına.
Sentence:2 Polarity:N son derece sıkıcı bir filim olduğunu söyleyebilirim.
Sentence:3 Polarity:N ..saçma bir konuyu nasılda filim yapmışlar maşallah
Sentence:4 Polarity:P bence hoş vakit geçirmek için seyredilebilir.
Sentence:5 Polarity:P hoş ve sevimli bir film.
Sentence:6 Polarity:O eşcinsellere pek sempati duymamakla beraber bu filmde sanki onları sevimli göstermeye çalışmışlar gibi geldi.
Sentence:7 Polarity:O itici bir film değildi sonuçta.
Sentence:8 Polarity:N seyrederken bu kadar sinirlendiğim film hatırlamıyorum.
Sentence:9 Polarity:O J.Aniston ın hiç mi umut yok diye sorduğu sahnede kıracaktım televizyonu!
Sentence:10 Polarity:O kimse yazmamış ben yazıyım:)
Sentence:11 Polarity:P güzel bi pazar günü şirin bi film izlemek isteyenler için çok güzel.
Я хочу разбить эти данные на таблицу, подобную этой:
Sentence_No - Sentence_Polarity - Sentence_txt
1 - N - 5puan verdim o da anistonun güzel yüzünün hatırına.
2 - N - son derece sıkıcı bir filim olduğunu söyleyebilirim.
3 - N - ..saçma bir konuyu nasılda filim yapmışlar maşallah
4 - P - bence hoş vakit geçirmek için seyredilebilir.
Поэтому я думаю, что мне нужно получитьчасть после "предложения:", "полярность" и последняя часть текста.Я хочу так, чтобы я мог классифицировать данные.
Я написал код ниже, но он не работает для этой цели:
df = pd.read_csv('SU-Movie-Reviews-Sentences.txt', lineterminator='\n', names=['Sentence_No', 'Sentence_Polarity' , 'Sentence_txt'])