Вы можете использовать оконные функции.Проверьте это
scala> val df = Seq((3,"sam",23,"9876543210","sam@yahoo.com"),(7,"ram",27,"8765432190","ram@gmail.com"),(3,"sam",28,"9876543210","sam@yahoo.com"),(6,"haris",30,"6543210777","haris@gmail.com"),(9,"ram",27,"8765432130","ram94@gmail.com"),(6,"haris",24,"6543210777","haris@gmail.com"),(4,"karthi",26,"4321066666","karthi@gmail.com")).toDF("id","name","age","phone","email_id")
df: org.apache.spark.sql.DataFrame = [id: int, name: string ... 3 more fields]
scala> val dup_cols = List("id","name","phone","email_id");
dup_cols: List[String] = List(id, name, phone, email_id)
scala> df.createOrReplaceTempView("contact")
scala> val dup_cols_qry = dup_cols.mkString(" count(*) over(partition by ", "," , " ) as cnt ")
dup_cols_qry: String = " count(*) over(partition by id,name,phone,email_id ) as cnt "
scala> val df2 = spark.sql("select *,"+ dup_cols_qry + " from contact ")
df2: org.apache.spark.sql.DataFrame = [id: int, name: string ... 4 more fields]
scala> df2.show(false)
+---+------+---+----------+----------------+---+
|id |name |age|phone |email_id |cnt|
+---+------+---+----------+----------------+---+
|4 |karthi|26 |4321066666|karthi@gmail.com|1 |
|7 |ram |27 |8765432190|ram@gmail.com |1 |
|9 |ram |27 |8765432130|ram94@gmail.com |1 |
|3 |sam |23 |9876543210|sam@yahoo.com |2 |
|3 |sam |28 |9876543210|sam@yahoo.com |2 |
|6 |haris |30 |6543210777|haris@gmail.com |2 |
|6 |haris |24 |6543210777|haris@gmail.com |2 |
+---+------+---+----------+----------------+---+
scala> df2.createOrReplaceTempView("contact2")
// Дубликаты
scala> spark.sql("select " + dup_cols.mkString(",") + " from contact2 where cnt = 2").show
+---+-----+----------+---------------+
| id| name| phone| email_id|
+---+-----+----------+---------------+
| 3| sam|9876543210| sam@yahoo.com|
| 3| sam|9876543210| sam@yahoo.com|
| 6|haris|6543210777|haris@gmail.com|
| 6|haris|6543210777|haris@gmail.com|
+---+-----+----------+---------------+
// Уникальный
scala> spark.sql("select " + dup_cols.mkString(",") + " from contact2 where cnt = 1").show
+---+------+----------+----------------+
| id| name| phone| email_id|
+---+------+----------+----------------+
| 4|karthi|4321066666|karthi@gmail.com|
| 7| ram|8765432190| ram@gmail.com|
| 9| ram|8765432130| ram94@gmail.com|
+---+------+----------+----------------+
РЕДАКТИРОВАТЬ 2:
val df = Seq(
(4,"karthi",26,"4321066666","karthi@gmail.com"),
(6,"haris",24,"6543210777","haris@gmail.com"),
(7,"ram",27,"8765432190","ram@gmail.com"),
(9,"ram",27,"8765432190","ram@gmail.com"),
(6,"haris",24,"6543210777","haris@gmail.com"),
(3,"sam",23,"9876543210","sam@yahoo.com"),
(3,"sam",23,"9876543210","sam@yahoo.com"),
(3,"sam",28,"9876543210","sam@yahoo.com"),
(6,"haris",30,"6543210777","haris@gmail.com")
).toDF("id","name","age","phone","email_id")
val dup_cols = List("name","phone","email_id")
val dup_cols_str = dup_cols.mkString(",")
df.createOrReplaceTempView("contact")
val dup_cols_count_qry = " count(*) over(partition by " + dup_cols_str + " ) as cnt "
val dup_cols_row_num_qry = " row_number() over(partition by " + dup_cols_str + " order by " + dup_cols_str + " ) as rwn "
val df2 = spark.sql("select *,"+ dup_cols_count_qry + "," + dup_cols_row_num_qry + " from contact ")
df2.show(false)
df2.createOrReplaceTempView("contact2")
spark.sql("select id, " + dup_cols_str + " from contact2 where cnt > 1 and rwn > 1").show
Результаты:
+---+-----+----------+---------------+
| id| name| phone| email_id|
+---+-----+----------+---------------+
| 6|haris|6543210777|haris@gmail.com|
| 6|haris|6543210777|haris@gmail.com|
| 3| sam|9876543210| sam@yahoo.com|
| 3| sam|9876543210| sam@yahoo.com|
| 9| ram|8765432190| ram@gmail.com|
+---+-----+----------+---------------+
РЕДАКТИРОВАТЬ3: - Проверка состояния нуля
val df = Seq(
(4,"karthi",26,"4321066666","karthi@gmail.com"),
(6,"haris",30,"6543210777","haris@gmail.com"),
(6,"haris",30,null,"haris@gmail.com"),
(7,"ram",27,"8765432190","ram@gmail.com"),
(9,"ram",27,"8765432190","ram@gmail.com"),
(6,"haris",24,"6543210777","haris@gmail.com"),
(6,null,24,"6543210777",null),
(3,"sam",23,"9876543210","sam@yahoo.com"),
(3,"sam",23,"9876543210","sam@yahoo.com"),
(3,"sam",28,"9876543210","sam@yahoo.com"),
(6,"haris",24,"6543210777","haris@gmail.com")
).toDF("id","name","age","phone","email_id")
val all_cols = df.columns
val dup_cols = List("name","phone","email_id")
val rem_cols = all_cols.diff(dup_cols)
val dup_cols_str = dup_cols.mkString(",")
val rem_cols_str = rem_cols.mkString(",")
val dup_cols_length = dup_cols.length
val df_null_col = dup_cols.map( x => when(col(x).isNull,0).otherwise(1)).reduce( _ + _ )
val df_null = df.withColumn("null_count", df_null_col)
df_null.createOrReplaceTempView("contact")
df_null.show(false)
val dup_cols_count_qry = " count(*) over(partition by " + dup_cols_str + " ) as cnt "
val dup_cols_row_num_qry = " row_number() over(partition by " + dup_cols_str + " order by " + dup_cols_str + " ) as rwn "
val df2 = spark.sql("select *,"+ dup_cols_count_qry + "," + dup_cols_row_num_qry + " from contact " + " where null_count = " + dup_cols_length )
df2.show(false)
df2.createOrReplaceTempView("contact2")
val df3 = spark.sql("select " + dup_cols_str + ", " + rem_cols_str + " from contact2 where cnt > 1 and rwn > 1")
df3.show(false)
Результаты:
+---+------+---+----------+----------------+----------+
|id |name |age|phone |email_id |null_count|
+---+------+---+----------+----------------+----------+
|4 |karthi|26 |4321066666|karthi@gmail.com|3 |
|6 |haris |30 |6543210777|haris@gmail.com |3 |
|6 |haris |30 |null |haris@gmail.com |2 |
|7 |ram |27 |8765432190|ram@gmail.com |3 |
|9 |ram |27 |8765432190|ram@gmail.com |3 |
|6 |haris |24 |6543210777|haris@gmail.com |3 |
|6 |null |24 |6543210777|null |1 |
|3 |sam |23 |9876543210|sam@yahoo.com |3 |
|3 |sam |23 |9876543210|sam@yahoo.com |3 |
|3 |sam |28 |9876543210|sam@yahoo.com |3 |
|6 |haris |24 |6543210777|haris@gmail.com |3 |
+---+------+---+----------+----------------+----------+
|id |name |age|phone |email_id |null_count|cnt|rwn|
+---+------+---+----------+----------------+----------+---+---+
|6 |haris |30 |6543210777|haris@gmail.com |3 |3 |1 |
|6 |haris |24 |6543210777|haris@gmail.com |3 |3 |2 |
|6 |haris |24 |6543210777|haris@gmail.com |3 |3 |3 |
|3 |sam |23 |9876543210|sam@yahoo.com |3 |3 |1 |
|3 |sam |23 |9876543210|sam@yahoo.com |3 |3 |2 |
|3 |sam |28 |9876543210|sam@yahoo.com |3 |3 |3 |
|7 |ram |27 |8765432190|ram@gmail.com |3 |2 |1 |
|9 |ram |27 |8765432190|ram@gmail.com |3 |2 |2 |
|4 |karthi|26 |4321066666|karthi@gmail.com|3 |1 |1 |
+---+------+---+----------+----------------+----------+---+---+
+-----+----------+---------------+---+---+
|name |phone |email_id |id |age|
+-----+----------+---------------+---+---+
|haris|6543210777|haris@gmail.com|6 |24 |
|haris|6543210777|haris@gmail.com|6 |24 |
|sam |9876543210|sam@yahoo.com |3 |23 |
|sam |9876543210|sam@yahoo.com |3 |28 |
|ram |8765432190|ram@gmail.com |9 |27 |
+-----+----------+---------------+---+---+
blankcheck
val df_null_col = dup_cols.map( x => when(col(x).isNull or regexp_replace(col(x), """^\s*$""","")=== lit(""),0).otherwise(1)).reduce( _ + _ )
Фильтровать только тогда, когда все 3 столбца либо пустые, либо нулевые
val df = Seq(
(4,"karthi",26,"4321066666","karthi@gmail.com"),
(6,"haris",30,"6543210777","haris@gmail.com"),
(6,null,30,null,null),
(7,"ram",27,"8765432190","ram@gmail.com"),
(9,"",27,"",""),
(7,"ram",27,"8765432190","ram@gmail.com"),
(6,"haris",24,"6543210777","haris@gmail.com"),
(6,null,24,"6543210777",null),
(3,"sam",23,"9876543210","sam@yahoo.com"),
(3,null,23,"9876543210","sam@yahoo.com"),
(3,null,28,"9876543213",null),
(6,"haris",24,null,"haris@gmail.com")
).toDF("id","name","age","phone","email_id")
val all_cols = df.columns
val dup_cols = List("name","phone","email_id")
val rem_cols = all_cols.diff(dup_cols)
val dup_cols_str = dup_cols.mkString(",")
val rem_cols_str = rem_cols.mkString(",")
val dup_cols_length = dup_cols.length
//val df_null_col = dup_cols.map( x => when(col(x).isNull,0).otherwise(1)).reduce( _ + _ )
val df_null_col = dup_cols.map( x => when(col(x).isNull or regexp_replace(col(x),lit("""^\s*$"""),lit("")) === lit(""),0).otherwise(1)).reduce( _ + _ )
val df_null = df.withColumn("null_count", df_null_col)
df_null.createOrReplaceTempView("contact")
df_null.show(false)
val dup_cols_count_qry = " count(*) over(partition by " + dup_cols_str + " ) as cnt "
val dup_cols_row_num_qry = " row_number() over(partition by " + dup_cols_str + " order by " + dup_cols_str + " ) as rwn "
//val df2 = spark.sql("select *,"+ dup_cols_count_qry + "," + dup_cols_row_num_qry + " from contact " + " where null_count = " + dup_cols_length )
val df2 = spark.sql("select *,"+ dup_cols_count_qry + "," + dup_cols_row_num_qry + " from contact " + " where null_count != 0 ")
df2.show(false)
df2.createOrReplaceTempView("contact2")
val df3 = spark.sql("select " + dup_cols_str + ", " + rem_cols_str + " from contact2 where cnt > 1 and rwn > 1")
df3.show(false)