Предполагая, что данные в data.csv
:
import pandas as pd
from collections import defaultdict
df = pd.read_csv('data.csv')
high_nps = defaultdict(lambda: 0)
low_nps = defaultdict(lambda: 0)
high_nps.update(dict(df[df['NPS'] >= 9].groupby('CouncilName').count().reset_index()[['CouncilName', 'NPS']].values))
low_nps.update(dict(df[df['NPS'] <= 6].groupby('CouncilName').count().reset_index()[['CouncilName', 'NPS']].values))
total_nps = dict(df.groupby('CouncilName').count().reset_index()[['CouncilName', 'NPS']].values)
nps_score = {council: (high_nps[council] - low_nps[council]) / float(total_nps[council]) for council in total_nps}
print(nps_score)
Отпечатки:
{'Council A': 0.0, 'Council B': -1.0, 'Council C': -1.0}