Я борюсь за реализацию модели, в которой коэффициент концентрации переменной Дирихле зависит от другой переменной.
Ситуация следующая:
Сбой системы из-за неисправных компонентов (Есть три компонента, только один отказ при каждом испытании / наблюдении.)
Вероятность отказа компонентов зависит от температуры.
Вот (прокомментированная) краткая реализацияситуация:
import numpy as np
import pymc3 as pm
import theano.tensor as tt
# Temperature data : 3 cold temperatures and 3 warm temperatures
T_data = np.array([10, 12, 14, 80, 90, 95])
# Data of failures of 3 components : [0,0,1] means component 3 failed
F_data = np.array([[0, 0, 1], \
[0, 0, 1], \
[0, 0, 1], \
[1, 0, 0], \
[1, 0, 0], \
[1, 0, 0]])
n_component = 3
# When temperature is cold : Component 1 fails
# When temperature is warm : Component 3 fails
# Component 2 never fails
# Number of observations :
n_obs = len(F_data)
# The number of failures can be modeled as a Multinomial F ~ M(n_obs, p) with parameters
# - n_test : number of tests (Fixed)
# - p : probability of failure of each component (shape (n_obs, 3))
# The probability of failure of components follows a Dirichlet distribution p ~ Dir(alpha) with parameters:
# - alpha : concentration (shape (n_obs, 3))
# The Dirichlet distributions ensures the probabilities sum to 1
# The alpha parameters (and the the probability of failures) depend on the temperature alpha ~ a + b * T
# - a : bias term (shape (1,3))
# - b : describes temperature dependency of alpha (shape (1,3))
_
# The prior on "a" is a normal distributions with mean 1/2 and std 0.001
# a ~ N(1/2, 0.001)
# The prior on "b" is a normal distribution zith mean 0 and std 0.001
# b ~ N(0, 0.001)
# Coding it all with pymc3
with pm.Model() as model:
a = pm.Normal('a', 1/2, 1/(0.001**2), shape = n_component)
b = pm.Normal('b', 0, 1/(0.001**2), shape = n_component)
# I generate 3 alphas values (corresponding to the 3 components) for each of the 6 temperatures
# I tried different ways to compute alpha but nothing worked out
alphas = pm.Deterministic('alphas', a + b * tt.stack([T_data, T_data, T_data], axis=1))
#alphas = pm.Deterministic('alphas', a + b[None, :] * T_data[:, None])
#alphas = pm.Deterministic('alphas', a + tt.outer(T_data,b))
# I think I should get 3 probabilities (corresponding to the 3 components) for each of the 6 temperatures
#p = pm.Dirichlet('p', alphas, shape = n_component)
p = pm.Dirichlet('p', alphas, shape = (n_obs,n_component))
# Multinomial is observed and take values from F_data
F = pm.Multinomial('F', 1, p, observed = F_data)
with model:
trace = pm.sample(5000)
Я получаю следующую ошибку в функции примера:
RemoteTraceback Traceback (most recent call last)
RemoteTraceback:
"""
Traceback (most recent call last):
File "/anaconda3/lib/python3.6/site-packages/pymc3/parallel_sampling.py", line 73, in run
self._start_loop()
File "/anaconda3/lib/python3.6/site-packages/pymc3/parallel_sampling.py", line 113, in _start_loop
point, stats = self._compute_point()
File "/anaconda3/lib/python3.6/site-packages/pymc3/parallel_sampling.py", line 139, in _compute_point
point, stats = self._step_method.step(self._point)
File "/anaconda3/lib/python3.6/site-packages/pymc3/step_methods/arraystep.py", line 247, in step
apoint, stats = self.astep(array)
File "/anaconda3/lib/python3.6/site-packages/pymc3/step_methods/hmc/base_hmc.py", line 117, in astep
'might be misspecified.' % start.energy)
ValueError: Bad initial energy: inf. The model might be misspecified.
"""
The above exception was the direct cause of the following exception:
ValueError Traceback (most recent call last)
ValueError: Bad initial energy: inf. The model might be misspecified.
The above exception was the direct cause of the following exception:
RuntimeError Traceback (most recent call last)
<ipython-input-5-121fdd564b02> in <module>()
1 with model:
2 #start = pm.find_MAP()
----> 3 trace = pm.sample(5000)
/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py in sample(draws, step, init, n_init, start, trace, chain_idx, chains, cores, tune, nuts_kwargs, step_kwargs, progressbar, model, random_seed, live_plot, discard_tuned_samples, live_plot_kwargs, compute_convergence_checks, use_mmap, **kwargs)
438 _print_step_hierarchy(step)
439 try:
--> 440 trace = _mp_sample(**sample_args)
441 except pickle.PickleError:
442 _log.warning("Could not pickle model, sampling singlethreaded.")
/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py in _mp_sample(draws, tune, step, chains, cores, chain, random_seed, start, progressbar, trace, model, use_mmap, **kwargs)
988 try:
989 with sampler:
--> 990 for draw in sampler:
991 trace = traces[draw.chain - chain]
992 if trace.supports_sampler_stats and draw.stats is not None:
/anaconda3/lib/python3.6/site-packages/pymc3/parallel_sampling.py in __iter__(self)
303
304 while self._active:
--> 305 draw = ProcessAdapter.recv_draw(self._active)
306 proc, is_last, draw, tuning, stats, warns = draw
307 if self._progress is not None:
/anaconda3/lib/python3.6/site-packages/pymc3/parallel_sampling.py in recv_draw(processes, timeout)
221 if msg[0] == 'error':
222 old = msg[1]
--> 223 six.raise_from(RuntimeError('Chain %s failed.' % proc.chain), old)
224 elif msg[0] == 'writing_done':
225 proc._readable = True
/anaconda3/lib/python3.6/site-packages/six.py in raise_from(value, from_value)
RuntimeError: Chain 1 failed.
Есть предложения?