Я делаю PCA на генной матрице, которая генерируется,
data.matrix <- matrix(nrow=1000,ncol=10)
colnames(data.matrix) <- c(paste("wt",1:5,seq=""),paste("ko",1:5,seq=""))
rownames(data.matrix) <- c(paste("gene",1:1000,seq=""))
for(i in 1:1000){
wt.value <- rpois(5,lambda = sample(x=10:1000,size = 1))
ko.value <- rpois(5,lambda = sample(x=10:1000,size = 1))
data.matrix[i,] <- c(wt.value,ko.value)
}
head(data.matrix)
Однако, когда я использую разные методы для PCA, кажется, что результаты разные.Во-первых, я использую функцию prcomp () и устанавливаю центр параметров и масштаб как TRUE
pca <- prcomp(t(data.matrix),scale = TRUE,center = TRUE)
Это дает результат
> head(pca$x)
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
wt 1 -28.53655 0.8854383 3.1131238 -5.9954480 2.25035104 -5.7410346 -3.7012447 -0.3814312
wt 2 -28.52902 -5.9444648 -1.4076822 5.0848454 1.95499941 1.2085364 -2.9876925 -2.6067478
wt 3 -28.20923 -4.9139767 3.0002804 0.9265671 -0.20113099 0.8996807 3.8002186 5.5054392
wt 4 -28.34473 3.9979801 -8.6897406 1.0091133 0.09485369 -1.0152221 1.9143473 -1.4684064
wt 5 -28.11383 6.0484765 3.9915348 -0.9655781 -4.15302287 4.6649855 0.9518471 -0.9617939
ko 1 28.79886 1.7334621 -0.2196764 3.3399867 -3.15128297 0.8190534 -6.6076358 3.0583754
PC9 PC10
wt 1 -0.3407986 2.007856e-14
wt 2 3.8783848 -1.415274e-14
wt 3 -3.2851629 1.525950e-14
wt 4 -3.0906947 -1.086024e-14
wt 5 2.8361550 9.615572e-15
ko 1 -2.7765555 3.098303e-14
Затем я пытаюсь масштабировать данные перед использованием prcomp,что выглядит следующим образом.
data.matrix1 <- base::scale(data.matrix,scale = T,center = T)
pca1 <- prcomp(t(data.matrix1),scale = F,center = F)
и результат
> head(pca1$x)
PC1 PC2 PC3 PC4 PC5 PC6 PC7
wt 1 -22.55748 22.02238 0.65748920 -1.840202787 0.62029220 -0.02719390 0.5086453
wt 2 -22.59268 21.99110 -0.06182498 0.501444120 -1.40202773 -1.40378996 0.1613028
wt 3 -22.57925 22.01502 -0.39997569 -0.059653681 -0.08420866 -0.06076671 -1.0856140
wt 4 -22.62006 21.95731 -1.17116782 1.041911324 1.45442072 0.09886287 0.7055064
wt 5 -22.60121 21.98247 0.96933394 0.352323617 -0.59038988 1.39983077 -0.2900812
ko 1 -22.68592 -21.90240 0.61933659 0.002144164 -0.14879010 -0.34936597 1.5217331
PC8 PC9 PC10
wt 1 0.5642123 -0.4199931 -0.46607294
wt 2 0.3137377 -0.7366336 0.32207940
wt 3 0.5216304 1.7000837 -0.03079762
wt 4 -0.2032306 -0.2901303 0.06174784
wt 5 -1.1912112 -0.2566693 0.12432282
ko 1 -0.4532521 1.1513345 0.50913300
В чем разница между двумя методами?