Как удалить выброс из DataFrame с помощью IQR? - PullRequest
0 голосов
/ 22 мая 2018

У меня есть Dataframe с большим количеством столбцов (функция около 100), я хочу применить метод interquartile и хотел удалить выброс из фрейма данных.

Я использую эту ссылку stackOverflow

Но проблема в том, что нань вышеописанного метода работает правильно,

Когда я пытаюсь так, как это

Q1 = stepframe.quantile(0.25)
Q3 = stepframe.quantile(0.75)
IQR = Q3 - Q1
((stepframe < (Q1 - 1.5 * IQR)) | (stepframe > (Q3 + 1.5 * IQR))).sum()

это дает мне это

((stepframe < (Q1 - 1.5 * IQR)) | (stepframe > (Q3 + 1.5 * IQR))).sum()
Out[35]: 
Day                      0
Col1                     0
Col2                     0
col3                     0
Col4                     0
Step_Count            1179
dtype: int64

Я просто хотел знать, что я буду делать дальше, чтобы все выбросы из фрейма данных были удалены.

, если я использую это

def remove_outlier(df_in, col_name):
q1 = df_in[col_name].quantile(0.25)
q3 = df_in[col_name].quantile(0.75)
iqr = q3-q1 #Interquartile range
fence_low  = q1-1.5*iqr
fence_high = q3+1.5*iqr
df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)]
return df_out

re_dat = remove_outlier(stepframe, stepframe.columns)

Я получаю эту ошибку

ValueError: Cannot index with multidimensional key

в этой строке

    df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)]

1 Ответ

0 голосов
/ 22 мая 2018

Вы можете использовать:

np.random.seed(33454)
stepframe = pd.DataFrame({'a': np.random.randint(1, 200, 20), 
                          'b': np.random.randint(1, 200, 20),
                          'c': np.random.randint(1, 200, 20)})

stepframe[stepframe > 150] *= 10
print (stepframe)

Q1 = stepframe.quantile(0.25)
Q3 = stepframe.quantile(0.75)
IQR = Q3 - Q1

df = stepframe[~((stepframe < (Q1 - 1.5 * IQR)) |(stepframe > (Q3 + 1.5 * IQR))).any(axis=1)]

print (df)
      a    b     c
1   109   50   124
3   137   60  1990
4    19  138   100
5    86   83   143
6    55   23    58
7    78  145    18
8   132   39    65
9    37  146  1970
13   67  148  1880
15  124  102    21
16   93   61    56
17   84   21    25
19   34   52   126

Подробности :

Сначала создайте boolean DataFrame с цепочкой |:

print (((stepframe < (Q1 - 1.5 * IQR)) | (stepframe > (Q3 + 1.5 * IQR))))
        a      b      c
0   False   True  False
1   False  False  False
2    True  False  False
3   False  False  False
4   False  False  False
5   False  False  False
6   False  False  False
7   False  False  False
8   False  False  False
9   False  False  False
10   True  False  False
11  False   True  False
12  False   True  False
13  False  False  False
14  False   True  False
15  False  False  False
16  False  False  False
17  False  False  False
18  False   True  False
19  False  False  False

А затем используйте DataFrame.any для проверки хотя бы одного True на строку и последней инвертированной логической маски с помощью ~:

print (~((stepframe < (Q1 - 1.5 * IQR)) | (stepframe > (Q3 + 1.5 * IQR))).any(axis=1))
0     False
1      True
2     False
3      True
4      True
5      True
6      True
7      True
8      True
9      True
10    False
11    False
12    False
13     True
14    False
15     True
16     True
17     True
18    False
19     True
dtype: bool

invert решения сизмененные условия - от < до >= и > до <=, цепочка по & для AND и последний фильтр по all для проверки всех True s для строк

print (((stepframe >= (Q1 - 1.5 * IQR)) & (stepframe <= (Q3 + 1.5 * IQR))).all(axis=1))
0     False
1      True
2     False
3      True
4      True
5      True
6      True
7      True
8      True
9      True
10    False
11    False
12    False
13     True
14    False
15     True
16     True
17     True
18    False
19     True
dtype: bool


df = stepframe[((stepframe >= (Q1 - 1.5 * IQR))& (stepframe <= (Q3 + 1.5 * IQR))).all(axis=1)]
...