Оценка американского фондового опциона с нейронной сетью TensorFlow, симуляция Монте-Карло - PullRequest
0 голосов
/ 30 января 2019

поэтому я пытаюсь смоделировать с американским опционом Монте-Карло (Stock) и использовать TensorFlow для определения его цены.

Я использую две вспомогательные функции, get_continuation_function для созданияОператоры TF.И pricing_function для создания расчетного графика для расчета цены.

Оператор npv является суммой оптимальных решений об упражнении.Каждый раз я проверяю, превышает ли ценность исполнения прогнозируемое значение продолжения (другими словами, есть ли опцион в деньгах).

А функция фактической цены american_tf .Я выполняю функцию, чтобы создать пути, значения упражнений для пути обучения.Затем я выполняю итерацию в обратном порядке по training_functions и изучаю значение и решение для каждой даты упражнения.

def get_continuation_function():
    X = tf.placeholder(tf.float32, (None,1),name="X")
    y = tf.placeholder(tf.float32, (None,1),name="y")
    w = tf.Variable(tf.random_uniform((1,1))*0.1,,name="w")
    b = tf.Variable(initial_value = tf.ones(1)*1,name="b")
    y_hat = tf.add(tf.matmul(X, w), b)
    pre_error = tf.pow(y-y_hat,2)
    error = tf.reduce_mean(pre_error)
    train = tf.train.AdamOptimizer(0.1).minimize(error)
    return(X, y, train, w, b, y_hat)


def pricing_function(number_call_dates):
    S = tf.placeholder(tf.float32,name="S")
    # First excerise date
    dts = tf.placeholder(tf.float32,name="dts")
    # 2nd exersice date
    K = tf.placeholder(tf.float32,name="K")
    r = tf.placeholder(tf.float32,,name="r")
    sigma = tf.placeholder(tf.float32,name="sigma")
    dW = tf.placeholder(tf.float32,name="dW") 

    S_t = S * tf.cumprod(tf.exp((r-sigma**2/2) * dts + sigma * tf.sqrt(dts) * dW), axis=1)
    E_t = tf.exp(-r * tf.cumsum(dts)) * tf.maximum(K-S_t, 0)

    continuationValues = []
    training_functions = []

    previous_exersies = 0
    npv = 0
    for i in range(number_call_dates-1):
        (input_x, input_y, train, w, b, y_hat) = get_continuation_function()
        training_functions.append((input_x, input_y, train, w, b, y_hat))
        X = tf.keras.activations.relu(S_t[:, i])
        contValue = tf.add(tf.matmul(X, w),b)
        continuationValues.append(contValue)
        inMoney = tf.cast(tf.greater(E_t[:,i], 0.), tf.float32)
        exercise = tf.cast(tf.greater(E_t[:,i], contValue[:,0]), tf.float32) * inMoney * (1-previous_exersies)
        previous_exersies += exercise
        npv += exercise*E_t[:,i]

    # Last exercise date
    inMoney = tf.cast(tf.greater(E_t[:,-1], 0.), tf.float32)
    exercise =  inMoney * (1-previous_exersies)
    npv += exercise*E_t[:,-1]
    npv = tf.reduce_mean(npv)
    return([S, dts, K, r, sigma,dW, S_t, E_t, npv, training_functions])


def american_tf(S_0, strike, M, impliedvol, riskfree_r, random_train, random_pricing):
    n_exercise = len(M)
    with tf.Session() as sess:

        S,dts,K,r,sigma,dW,S_t,E_t,npv,training_functions = pricing_function(n_exercise)
        sess.run(tf.global_variables_initializer())
        paths, exercise_values = sess.run([S_t,E_t], {
            S: S_0,
            dts: M,
            K: strike,
            r: riskfree_r,
            sigma: impliedvol,
            dW: random_train
        })

        for i in range(n_exercise-1)[::-1]:
            (input_x,input_y,train,w,b,y_hat) = training_functions[i]
            y= exercise_values[:,i+1:i+2]
            X = paths[:,i]
            print(input_x.shape)
            print((exercise_values[:,i]>0).shape)
            for epochs in range(100):
                _ = sess.run(train, {input_x:X[exercise_values[:,i]>0], 
                                     input_y:y[exercise_values[:,i]>0]})
                cont_value = sess.run(y_hat, {input_x:X, input_y:y})   
                exercise_values[:,i+1:i+2] = np.maximum(exercise_values[:,i+1:i+2], cont_value)

        npv = sess.run(npv, {S: S_0, K: strike, r: riskfree_r, sigma: impliedvol, dW: N_pricing})

        return npv


N_samples_learn = 1000
N_samples_pricing = 1000
calldates = 12
N = np.random.randn(N_samples_learn,calldates)
N_pricing = np.random.randn(N_samples_pricing,calldates)

american_tf(100., 90., [1.]*calldates, 0.25, 0.05, N, N_pricing)

Calldates - это количество шагов
набор обучающей выборки = 1000
размер тестовой выборки = 1000

Но моя ошибка очень странная

 ---> 23                 nput_y:y[exercise_values[:,i]>0]})

 ValueError: Cannot feed value of shape (358,) for Tensor 'Placeholder_441:0', which has shape '(?, 1)'

1 Ответ

0 голосов
/ 31 января 2019

В комментариях @ hallo12 обсуждается множество вещей.Я просто хочу загрузить рабочую версию, включающую все изменения.Код протестирован и работает без ошибок.Но чтобы убедиться, что итоговый результат обучения правильный, вы можете сравнить его с некоторым эталонным тестом.

Общий комментарий : в этом типе приложения полезно разделить измерение переменных и времени,особенно если у вас есть только 1 переменная.Например, ваш входной массив должен быть 3D с

[time, training sample, input variable]

, а не 2D с [тренировочный образец, время].Таким образом, при выполнении итерации по измерению времени остальные измерения остаются неизменными.

import tensorflow as tf
import numpy as np

def get_continuation_function():
    X = tf.placeholder(tf.float32, (None,1),name="X")
    y = tf.placeholder(tf.float32, (None,1),name="y")
    w = tf.Variable(tf.random_uniform((1,1))*0.1,name="w")
    b = tf.Variable(initial_value = tf.ones(1)*1,name="b")
    y_hat = tf.add(tf.matmul(X, w), b)
    pre_error = tf.pow(y-y_hat,2)
    error = tf.reduce_mean(pre_error)
    train = tf.train.AdamOptimizer(0.1).minimize(error)
    return(X, y, train, w, b, y_hat)


def pricing_function(number_call_dates):
    S = tf.placeholder(tf.float32,name="S")
    # First excerise date
    dts = tf.placeholder(tf.float32,name="dts")
    # 2nd exersice date
    K = tf.placeholder(tf.float32,name="K")
    r = tf.placeholder(tf.float32,name="r")
    sigma = tf.placeholder(tf.float32,name="sigma")
    dW = tf.placeholder(tf.float32,name="dW")

    S_t = S * tf.cumprod(tf.exp((r-sigma**2/2) * dts + sigma * tf.sqrt(dts) * dW), axis=1)
    E_t = tf.exp(-r * tf.cumsum(dts)) * tf.maximum(K-S_t, 0)

    continuationValues = []
    training_functions = []

    previous_exersies = 0
    npv = 0
    for i in range(number_call_dates-1):
        (input_x, input_y, train, w, b, y_hat) = get_continuation_function()
        training_functions.append((input_x, input_y, train, w, b, y_hat))
        X = tf.keras.activations.relu(S_t[:, i:i+1])
        contValue = tf.add(tf.matmul(X, w),b)
        continuationValues.append(contValue)
        inMoney = tf.cast(tf.greater(E_t[:,i], 0.), tf.float32)
        exercise = tf.cast(tf.greater(E_t[:,i], contValue[:,0]), tf.float32) * inMoney * (1-previous_exersies)
        previous_exersies += exercise
        npv += exercise*E_t[:,i]

    # Last exercise date
    inMoney = tf.cast(tf.greater(E_t[:,-1], 0.), tf.float32)
    exercise =  inMoney * (1-previous_exersies)
    npv += exercise*E_t[:,-1]
    npv = tf.reduce_mean(npv)
    return([S, dts, K, r, sigma,dW, S_t, E_t, npv, training_functions])


def american_tf(S_0, strike, M, impliedvol, riskfree_r, random_train, random_pricing):
    n_exercise = len(M)
    with tf.Session() as sess:

        S,dts,K,r,sigma,dW,S_t,E_t,npv,training_functions = pricing_function(n_exercise)
        sess.run(tf.global_variables_initializer())
        paths, exercise_values = sess.run([S_t,E_t], {
            S: S_0,
            dts: M,
            K: strike,
            r: riskfree_r,
            sigma: impliedvol,
            dW: random_train
        })

        for i in range(n_exercise-1)[::-1]:
            (input_x,input_y,train,w,b,y_hat) = training_functions[i]
            y= exercise_values[:,i+1:i+2]
            X = paths[:,i]
            print(input_x.shape)
            print((exercise_values[:,i]>0).shape)
            for epochs in range(100):
                _ = sess.run(train, {input_x:(X[exercise_values[:,i]>0]).reshape(len(X[exercise_values[:,i]>0]),1),
                                     input_y:(y[exercise_values[:,i]>0]).reshape(len(y[exercise_values[:,i]>0]),1)})
                cont_value = sess.run(y_hat, {input_x:X.reshape(len(X),1), input_y:y.reshape(len(y),1)})
                exercise_values[:,i+1:i+2] = np.maximum(exercise_values[:,i+1:i+2], cont_value)

        npv = sess.run(npv, {S: S_0, K: strike, dts:M, r: riskfree_r, sigma: impliedvol, dW: N_pricing})

        return npv


N_samples_learn = 1000
N_samples_pricing = 1000
calldates = 12
N = np.random.randn(N_samples_learn,calldates)
N_pricing = np.random.randn(N_samples_pricing,calldates)

print(american_tf(100., 90., [1.]*calldates, 0.25, 0.05, N, N_pricing))
...