Я использую следующий код.Я запускаю это на компьютере с графическим процессором с конфигурацией ниже:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176
Я использую Pytorch версии 1.0.0.dev20181123.
Я сталкиваюсь с этой ошибкой: RuntimeError: Работник DataLoader (pid 23646) прерывается сигналом: недопустимая инструкция.
Думая, что это проблема с общей памятью, я попытался найти решение здесь: https://www.lucidarme.me/increase-shared-memory-limit/
Это не помогло.Есть указатели?
import argparse
import json
import os
import torch
#=====START: ADDED FOR DISTRIBUTED======
from distributed import init_distributed, apply_gradient_allreduce, reduce_tensor
from torch.utils.data.distributed import DistributedSampler
#=====END: ADDED FOR DISTRIBUTED======
from torch.utils.data import DataLoader
from glow import WaveGlow, WaveGlowLoss
from mel2samp import Mel2Samp
def load_checkpoint(checkpoint_path, model, optimizer):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
optimizer.load_state_dict(checkpoint_dict['optimizer'])
model_for_loading = checkpoint_dict['model']
model.load_state_dict(model_for_loading.state_dict())
print("Loaded checkpoint '{}' (iteration {})" .format(
checkpoint_path, iteration))
return model, optimizer, iteration
def save_checkpoint(model, optimizer, learning_rate, iteration, filepath):
print("Saving model and optimizer state at iteration {} to {}".format(
iteration, filepath))
model_for_saving = WaveGlow(**waveglow_config).cuda()
model_for_saving.load_state_dict(model.state_dict())
torch.save({'model': model_for_saving,
'iteration': iteration,
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, filepath)
def train(num_gpus, rank, group_name, output_directory, epochs, learning_rate,
sigma, iters_per_checkpoint, batch_size, seed, checkpoint_path):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
#=====START: ADDED FOR DISTRIBUTED======
if num_gpus > 1:
init_distributed(rank, num_gpus, group_name, **dist_config)
#=====END: ADDED FOR DISTRIBUTED======
criterion = WaveGlowLoss(sigma)
model = WaveGlow(**waveglow_config).cuda()
#=====START: ADDED FOR DISTRIBUTED======
if num_gpus > 1:
model = apply_gradient_allreduce(model)
#=====END: ADDED FOR DISTRIBUTED======
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Load checkpoint if one exists
iteration = 0
if checkpoint_path != "":
model, optimizer, iteration = load_checkpoint(checkpoint_path, model,
optimizer)
iteration += 1 # next iteration is iteration + 1
trainset = Mel2Samp(**data_config)
# =====START: ADDED FOR DISTRIBUTED======
train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None
# =====END: ADDED FOR DISTRIBUTED======
train_loader = DataLoader(trainset, num_workers=1, shuffle=False,
sampler=train_sampler,
batch_size=batch_size,
pin_memory=False,
drop_last=True)
# Get shared output_directory ready
if rank == 0:
if not os.path.isdir(output_directory):
os.makedirs(output_directory)
os.chmod(output_directory, 0o775)
print("output directory", output_directory)
model.train()
epoch_offset = max(0, int(iteration / len(train_loader)))
# ================ MAIN TRAINNIG LOOP! ===================
for epoch in range(epoch_offset, epochs):
print("Epoch: {}".format(epoch))
for i, batch in enumerate(train_loader):
model.zero_grad()
mel, audio = batch
mel = torch.autograd.Variable(mel.cuda())
audio = torch.autograd.Variable(audio.cuda())
outputs = model((mel, audio))
loss = criterion(outputs)
if num_gpus > 1:
reduced_loss = reduce_tensor(loss.data, num_gpus).item()
else:
reduced_loss = loss.item()
loss.backward()
optimizer.step()
print("{}:\t{:.9f}".format(iteration, reduced_loss))
if (iteration % iters_per_checkpoint == 0):
if rank == 0:
checkpoint_path = "{}/waveglow_{}".format(
output_directory, iteration)
save_checkpoint(model, optimizer, learning_rate, iteration,
checkpoint_path)
iteration += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str,
help='JSON file for configuration')
parser.add_argument('-r', '--rank', type=int, default=0,
help='rank of process for distributed')
parser.add_argument('-g', '--group_name', type=str, default='',
help='name of group for distributed')
args = parser.parse_args()
# Parse configs. Globals nicer in this case
with open(args.config) as f:
data = f.read()
config = json.loads(data)
train_config = config["train_config"]
global data_config
data_config = config["data_config"]
global dist_config
dist_config = config["dist_config"]
global waveglow_config
waveglow_config = config["waveglow_config"]
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
if args.group_name == '':
print("WARNING: Multiple GPUs detected but no distributed group set")
print("Only running 1 GPU. Use distributed.py for multiple GPUs")
num_gpus = 1
if num_gpus == 1 and args.rank != 0:
raise Exception("Doing single GPU training on rank > 0")
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
train(num_gpus, args.rank, args.group_name, **train_config)