У меня есть набор данных с 60000 изображений 227X227X3.Я столкнулся с нехваткой памяти при загрузке этих изображений в память.Мне нужны предложения для загрузки изображений, чтобы избежать нехватки памяти.Ниже приведен код Python, который я использую для загрузки изображений.Может кто-нибудь сказать мне, как я могу улучшить приведенный ниже фрагмент.
def loadImages(fnames,is_test):
path = '/home/assad/Desktop/grandfinal/grandfinalv2/dataset/test_images/'
if is_test:
path = '/home/assad/Desktop/grandfinal/grandfinalv2/dataset/test_images/'
loadedImages = []
#loadedImages = np.empty((N, 3, 227, 227), dtype=np.uint8)
for image in fnames:
tmp = Image.open(path + image)
img = tmp.copy()
loadedImages.append(img)
tmp.close()
return loadedImages
def get_pixels(fnames,is_test):
imgs = loadImages(fnames, is_test)
#print imgs
pixel_list = []
for img in imgs:
img = img.resize((227, 227), Image.ANTIALIAS)
arr = np.array(img, dtype="uint8")
arr=np.rollaxis(arr,2)
arr=arr.reshape(-1)
pixel_list.append(list(arr))
return np.array(pixel_list)
def label_from_category(category_id=None):
label_list = np.zeros(4)
label_list[category_id]=1
return list(label_list)
#print(label_from_category())
def features_from_data(data, is_test=True):
pixels = get_pixels(data.FILENAME, is_test)
labels = data["CATEGORY_ID"]
return pixels, labels
test_data = get_data(is_test=True)
iX_test, iY_test = features_from_data(test_data, is_test=True)
iY_test=iY_test.tolist()
iX_test, iY_test = features_from_data(test_data, is_test=True)
print (iX_test.shape)
iY_test=iY_test.tolist()
print(iY_test)