Мы можем использовать rollmean
из zoo
library(zoo)
for(i in 1:30) df1 <- rbind(df1, rollmeanr(tail(df1, 4), k = 4))
df1
# Texas Colorado
#1 3.000000 1.000000
#2 4.000000 2.000000
#3 3.000000 3.000000
#4 4.000000 4.000000
#5 3.500000 2.500000
#6 3.625000 2.875000
#7 3.531250 3.093750
#8 3.664062 3.117188
#9 3.580078 2.896484
#10 3.600098 2.995605
#11 3.593872 3.025757
#12 3.609528 3.008759
#13 3.595894 2.981651
#14 3.599848 3.002943
#15 3.599785 3.004777
#16 3.601264 2.999533
#17 3.599198 2.997226
#18 3.600024 3.001120
#19 3.600068 3.000664
#20 3.600138 2.999636
#21 3.599857 2.999661
#22 3.600022 3.000270
#23 3.600021 3.000058
#24 3.600009 2.999906
#25 3.599977 2.999974
#26 3.600007 3.000052
#27 3.600004 2.999997
#28 3.599999 2.999982
#29 3.599997 3.000001
#30 3.600002 3.000008
#31 3.600000 2.999997
#32 3.600000 2.999997
#33 3.600000 3.000001
#34 3.600000 3.000001
Или используя tidyverse
library(tidyverse)
for(i in 1:2) {
df1 <- df1 %>%
slice((n() - 3):n()) %>%
summarise_all(mean) %>%
bind_rows(df1, .)
}
Или с accumulate
seq_len(30) %>%
accumulate(., ~ .x %>%
slice(tail(row_number(), 4)) %>%
summarise_all(mean) %>%
bind_rows(.x, .), .init = df1) %>%
.[[30]]
# Texas Colorado
#1 3.000000 1.000000
#2 4.000000 2.000000
#3 3.000000 3.000000
#4 4.000000 4.000000
#5 3.500000 2.500000
#6 3.625000 2.875000
#7 3.531250 3.093750
#8 3.664062 3.117188
# ...
данные
df1 <- structure(list(Texas = c(3L, 4L, 3L, 4L), Colorado = 1:4),
class = "data.frame", row.names = c(NA,
-4L))