Вы можете использовать combine
в понимании списка с помощью zip
:
df = pd.DataFrame({'DateTime': ['2011-01-01 12:48:20', '2014-01-01 12:30:45']})
df['DateTime'] = pd.to_datetime(df['DateTime'])
df['date'] = df['DateTime'].dt.date
df['time'] = df['DateTime'].dt.time
import datetime
df['new'] = [datetime.datetime.combine(a, b) for a, b in zip(df['date'], df['time'])]
print (df)
DateTime date time new
0 2011-01-01 12:48:20 2011-01-01 12:48:20 2011-01-01 12:48:20
1 2014-01-01 12:30:45 2014-01-01 12:30:45 2014-01-01 12:30:45
Или преобразовать в строки, объединить и преобразовать снова:
df['new'] = pd.to_datetime(df['date'].astype(str) + ' ' +df['time'].astype(str))
print (df)
DateTime date time new
0 2011-01-01 12:48:20 2011-01-01 12:48:20 2011-01-01 12:48:20
1 2014-01-01 12:30:45 2014-01-01 12:30:45 2014-01-01 12:30:45
Но если использовать floor
для удаления времени с преобразованием времени в timedeltas, тогда используйте только +
:
df['date'] = df['DateTime'].dt.floor('d')
df['time'] = pd.to_timedelta(df['DateTime'].dt.strftime('%H:%M:%S'))
df['new'] = df['date'] + df['time']
print (df)
DateTime date time new
0 2011-01-01 12:48:20 2011-01-01 12:48:20 2011-01-01 12:48:20
1 2014-01-01 12:30:45 2014-01-01 12:30:45 2014-01-01 12:30:45