Использование API обнаружения объектов tenorflow, пытающегося обнаружить (вывести) объекты в объемных изображениях, следовательно, пытающегося использовать параллельную обработку ipython ipcluster.
, однако, не удалось передать объект пользовательского класса на все механизмы и получил ошибки травления.
TypeError: невозможно выбрать объекты _thread.RLock или TypeError: невозможно выбрать объекты SwigPyObject
class ObjectDetector(object):
def __init__(self):
from utils import label_map_util
PATH_TO_LABELS = '/tensorflow/models/label_map.pbtxt'
self.detection_graph = self._build_graph()
self.sess = tensorflow.Session(graph=self.detection_graph)
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=1, use_display_name=True)
self.category_index = label_map_util.create_category_index(categories)
def _build_graph(self):
PATH_TO_CKPT = '/tensorflow/models/frozen_inference_graph.pb'
detection_graph = tensorflow.Graph()
with detection_graph.as_default():
od_graph_def = tensorflow.GraphDef()
with tensorflow.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tensorflow.import_graph_def(od_graph_def, name='')
return detection_graph
def _load_image_into_numpy_array(self, image):
(im_width, im_height) = image.size
return numpy.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(numpy.uint8)
def detect(self, image):
image_np = self._load_image_into_numpy_array(image)
image_np_expanded = numpy.expand_dims(image_np, axis=0)
graph = self.detection_graph
image_tensor = graph.get_tensor_by_name('image_tensor:0')
boxes = graph.get_tensor_by_name('detection_boxes:0')
scores = graph.get_tensor_by_name('detection_scores:0')
classes = graph.get_tensor_by_name('detection_classes:0')
num_detections = graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = self.sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
boxes, scores, classes, num_detections = map(
numpy.squeeze, [boxes, scores, classes, num_detections])
return boxes, scores, classes.astype(int), num_detections
all_engines[ObjectDetector] = ObjectDetector
client = ObjectDetector()
all_engines['client'] = client
errrorTypeError: невозможно выбрать объекты _thread.RLock
возможно ли выдать код тензорного потока как класс всем двигателям.если да, то любой пример или руководство
строгий текст