Я структурировал данные, как показано ниже:
> str(df.train)
'data.frame': 124 obs. of 11 variables:
$ predictor01 : int 6 3 2 10 1 5 0 1 11 9 ...
$ predictor02 : int 148 78 197 168 189 166 118 115 143 171 ...
$ predictor03 : int 72 50 70 74 60 72 84 70 94 110 ...
$ predictor04 : int 35 32 45 0 23 19 47 30 33 24 ...
$ predictor05 : int 0 88 543 0 846 175 230 96 146 240 ...
$ predictor06 : num 33.6 31 30.5 38 30.1 25.8 45.8 34.6 36.6 45.4 ...
$ predictor07 : num 0.627 0.248 0.158 0.537 0.398 0.587 0.551 0.529 0.254 0.721 ...
$ predictor08 : int 50 26 53 34 59 51 31 32 51 54 ...
$ class-target : Factor w/ 2 levels "Sem_diabetes",..: 2 2 2 2 2 2 2 2 2 2 ...
$ class-target-binaray1 : logi TRUE TRUE TRUE TRUE TRUE TRUE ...
$ class-target-binaray2 : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
, и вот их резюме:
predictor01 predictor02 predictor03 predictor04 predictor05 predictor06
Min. : 0.000000 Min. : 0.0000 Min. : 0.00000 Min. : 0.00000 Min. : 0.00000 Min. : 0.00000
1st Qu.: 1.000000 1st Qu.:102.0000 1st Qu.: 64.75000 1st Qu.: 0.00000 1st Qu.: 0.00000 1st Qu.:26.97500
Median : 3.000000 Median :124.0000 Median : 72.00000 Median :25.00000 Median : 0.00000 Median :33.20000
Mean : 3.725806 Mean :127.6371 Mean : 69.98387 Mean :22.37903 Mean : 78.41129 Mean :32.90242
3rd Qu.: 6.000000 3rd Qu.:151.2500 3rd Qu.: 80.50000 3rd Qu.:34.00000 3rd Qu.:131.25000 3rd Qu.:37.40000
Max. :14.000000 Max. :197.0000 Max. :110.00000 Max. :63.00000 Max. :846.00000 Max. :67.10000
predictor07 predictor08 class-target class-target-binaray1 class-target-binaray2
Min. :0.078000 Min. :21.00000 Target1 :62 Mode :logical Mode :logical
1st Qu.:0.262500 1st Qu.:23.75000 Target2 :62 FALSE:62 FALSE:62
Median :0.407000 Median :27.50000 TRUE :62 TRUE :62
Mean :0.495871 Mean :32.20161
3rd Qu.:0.657500 3rd Qu.:39.50000
Max. :2.420000 Max. :67.00000
Я создал шаблон, выполнив ...
mod.rn <- neuralnet( class-target-binaray1 + class-target-binaray2 ~ predictor01 + predictor03 + predictor04 +
predictor05 + predictor06 + predictor07,
df.train, hidden=4,
linear.output = TRUE, stepmax=1e6)
До этого момента все в порядке.
Затем я применил сгенерированную модель к тестовым данным, выполнив:
test_result <- compute(mod.rn, df.test[,1:8])
Структура тестовых данных аналогична обучающей,Поэтому я сделал [,1:8]
, чтобы выбрать только переменные предиктора.
Когда я выполнил последнюю команду, указанную выше, я получил следующее сообщение об ошибке:
Error in neurons[[i]] %*% weights[[i]] : argumentos não compatíveis
Есть идеи?