Когда я создаю приложение-черточку, включающее боковую панель, в которой пользователи могут выбирать часть данных, которые затем выводятся на график (и отображаются на другой вкладке), я сталкиваюсь с проблемой, что различные компоненты dcc
не остаются вуказанный мной порядок.
ОБНОВЛЕНИЕ
Я создал упрощенный воспроизводимый пример.У меня нет опыта работы с HTML и CSS, поэтому я хотел бы спросить вас, как убедиться, что html.Div
и html.P
точно следуют порядку, указанному в приведенном ниже коде:
Итак: Пол--Дата присоединения-Дата-состояние-состояние
import pandas as pd
import dash
import dash_core_components as dcc
import dash_html_components as html
import dash_table
from datetime import datetime as dt
df = pd.DataFrame.from_dict({'Customer': [111, 222, 555, 666],
'zip_city': ['Aguadilla', 'Aguadilla', 'Arecibo', 'Wrangell'],
'zip_state': ['PR', 'TX', 'CA', 'MI'],
'zip_latitude':[18.498987, 18.498987, 18.449732,56.409507],
'zip_longitude':[-67.13699,-67.13699,-66.69879,-132.33822],
'Birtdate': pd.to_datetime(['1964-04-28','1994-04-18','1993-04-04','1997-05-03'], format="%Y-%m-%d", utc=True, dayfirst=True),
'JoinDate': pd.to_datetime(['1980-08-02','2008-03-24','2004-12-17','2010-12-11'], format="%Y-%m-%d", utc=True, dayfirst=True),
'Gender':['m','f','m','alien']})
df["CustomerCount"] = df.groupby(["zip_city"], as_index=False)["Customer"].transform("count")
gender_options = []
for gender in df['Gender'].unique():
gender_options.append({'label':str(gender),
'value':gender})
state_options = []
for state in df['zip_state'].unique():
gender_options.append({'label':str(state),
'value':state})
app = dash.Dash()
app.css.append_css({'external_url': 'https://codepen.io/chriddyp/pen/bWLwgP.css'})
app.layout = html.Div([html.H1('A Dashboard', style={'textAlign':'center'}),
html.Div(children=[
html.H1('Input', style={'textAlign':'center'}),
html.H6('Gender'),
html.P(
dcc.Checklist(id='gender-picker',
options=gender_options,
values=['m','f']
)
),
html.H6('Join Date'),
html.P(
dcc.DatePickerRange(
id='joindate',
min_date_allowed=min(df.JoinDate),
max_date_allowed=max(df.JoinDate),
initial_visible_month=dt(1989, 11, 9),
start_date=min(df.JoinDate),
end_date=max(df.JoinDate)
)
),
html.H6('Birthdate'),
html.P(
dcc.DatePickerRange(
id='birthdate',
min_date_allowed=min(df['Birtdate']),
max_date_allowed=max(df['Birtdate']),
initial_visible_month=dt(1989, 11, 9),
start_date=min(df['Birtdate']),
end_date=max(df['Birtdate'])
)
),
html.H6('State'),
html.P(html.Div([
dcc.Checklist(id='state-picker',
options=state_options,
values= df['zip_state'].unique().tolist()
)
])
)
],
style = {'float':'left'},
className = "two columns"
),
html.Div([dcc.Tabs(children=[dcc.Tab(label='Map',
children=html.Div([
dcc.Graph(id='CustomerMap')
])
),
dcc.Tab(label='Data',
children=[html.Div([dash_table.DataTable(
id='table',
columns = [{"name": i, "id": i} for i in df.columns],
data = df.to_dict("rows")
)])
]
)
]
)
])
]
)
@app.callback(
dash.dependencies.Output('CustomerMap', 'figure'),
[dash.dependencies.Input('gender-picker', 'values')])
def update_figure(selected_gender):
filtered_df = df[df['Gender'].isin(selected_gender)]
filtered_df["CustomerCount"] = filtered_df.groupby(["zip_city"], as_index=False)["Customer"].transform("count")
customerCount = filtered_df['CustomerCount'].tolist()
zipcity = filtered_df['zip_city'].tolist()
hovertext = []
for i in range(len(customerCount)):
k = str(zipcity[i]) + ':' + str(customerCount[i])
hovertext.append(k)
return {'data':[dict(
type = 'scattergeo',
locationmode = 'USA-states',
lon = filtered_df['zip_longitude'],
lat = filtered_df['zip_latitude'],
text = hovertext,
hoverinfo = 'text',
marker = dict(
size = filtered_df['CustomerCount'],
line = dict(width=0.5, color='rgb(40,40,40)'),
sizemode = 'area'
),
transforms = [dict(
type = 'aggregate',
groups = filtered_df['zip_city'],
aggregations = [dict(target = filtered_df['Customer'], func = 'count', enabled = True)]
)
]
)
]
}
@app.callback(
dash.dependencies.Output('table', 'data'),
[dash.dependencies.Input('gender-picker', 'values')])
def update_table(selected_gender):
filtered_df = df[df['Gender'].isin(selected_gender)]
filtered_df["CustomerCount"] = filtered_df.groupby(["zip_city"], as_index=False)["Customer"].transform("count")
return filtered_df.to_dict("rows")
if __name__ == '__main__':
app.run_server()
Но в приложении он объединяет в себе опции двух флажков: