Я пытаюсь создать тренировочные данные для моего интеллектуального чат-бота.Каждый раз, когда пользователь входит на веб-страницу, он / она может вводить данные в файл.Эти файлы используются для создания обучающих данных.У меня нет идеи, что если будет более одного файла, как я буду брать данные из всех файлов и создавать данные для обучения.
Ниже приведен пример, используемый для обучения:
# things we need for NLP
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
# things we need for Tensorflow
import numpy as np
import tflearn
import tensorflow as tf
import random
import scipy
# import our chat-bot intents file
import json
with open('sales.json') as json_data:
intents = json.load(json_data)
words = []
classes = []
documents = []
ignore_words = ['?']
# loop through each sentence in our intents patterns
for intent in intents['intents']:
for pattern in intent['patterns']:
# tokenize each word in the sentence
w = nltk.word_tokenize(pattern)
# add to our words list
words.extend(w)
# add to documents in our corpus
documents.append((w, intent['tag']))
# add to our classes list
if intent['tag'] not in classes:
classes.append(intent['tag'])
# stem and lower each word and remove duplicates
words = [stemmer.stem(w.lower()) for w in words if w not in ignore_words]
words = sorted(list(set(words)))
# remove duplicates
classes = sorted(list(set(classes)))
print (len(documents), "documents")
print (len(classes), "classes", classes)
print (len(words), "unique stemmed words", words)
# create our training data
training = []
output = []
# create an empty array for our output
output_empty = [0] * len(classes)
# training set, bag of words for each sentence
for doc in documents:
# initialize our bag of words
bag = []
# list of tokenized words for the pattern
pattern_words = doc[0]
# stem each word
pattern_words = [stemmer.stem(word.lower()) for word in pattern_words]
# create our bag of words array
for w in words:
bag.append(1) if w in pattern_words else bag.append(0)
# output is a '0' for each tag and '1' for current tag
output_row = list(output_empty)
output_row[classes.index(doc[1])] = 1
training.append([bag, output_row])
# shuffle our features and turn into np.array
random.shuffle(training)
training = np.array(training)
# create train and test lists
train_x = list(training[:,0])
train_y = list(training[:,1])
# reset underlying graph data
tf.reset_default_graph()
# Build neural network
net = tflearn.input_data(shape=[None, len(train_x[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(train_y[0]), activation='softmax')
net = tflearn.regression(net)
# Define model and setup tensorboard
model = tflearn.DNN(net, tensorboard_dir='tflearn_logs')
# Start training (apply gradient descent algorithm)
model.fit(train_x, train_y, n_epoch=1000, batch_size=8, show_metric=True)
model.save('model.tflearn')
import pickle
pickle.dump( {'words':words, 'classes':classes, 'train_x':train_x, 'train_y':train_y}, open( "training_data", "wb" ) )
Здесь я создал тренировочные данные, используя только один файл json, однако, если существует более одного файла, как я могу использовать все файлы для создания тренировочных данных.