Сначала необходимо дедуплицировать одинаковые имена столбцов для пар дат со столбцами значений:
s = df.columns.to_series()
mask = df.columns.duplicated(keep=False)
c = np.where(mask, s + '_' + (s.groupby(s).cumcount() + 1).astype(str) , s)
df.columns = c
print (df)
date_1 value_1 date_2 value_2 date_3 value_3
0 01-01-1990 1.0 01-01-1990 2 02-01-1990 4.0
1 02-01-1990 3.0 03-01-1990 20 NaN NaN
2 NaN NaN 04-01-1990 30 NaN NaN
Затем выполнить цикл по groupby
с лямбда-функцией и разбиением по всем парам, создать столбец дат, удалить пропущенные значения и последнийconcat
вместе:
dfs = [x.set_index(x.columns[0]).dropna()
for i, x in df.groupby(lambda x: x.split('_')[1], axis=1)]
#print (dfs)
df2 = pd.concat(dfs, axis=1)
print (df2)
value_1 value_2 value_3
01-01-1990 1.0 2.0 NaN
02-01-1990 3.0 NaN 4.0
03-01-1990 NaN 20.0 NaN
04-01-1990 NaN 30.0 NaN
РЕДАКТИРОВАТЬ:
Ответ был изменен для столбцов даты и времени и следующих двух столбцов значений данных:
print (df)
date_security GH_LAST_PRICE Val GH_VOLUME_PRICE Val date_security \
0 01-01-1990 1.0 7.0 01-01-1990
1 01-02-1990 3.0 8.0 03-01-1990
2 NaN NaN NaN 04-01-1990
DG_LAST_PRICE Val DG_VOLUME_PRICE Val
0 2 10.0
1 20 NaN
2 30 1.0
Создать MultiIndex
:
df.columns = [(np.arange(len(df.columns)) // 3).astype(str), df.columns]
print (df)
# 0 1 \
date_security GH_LAST_PRICE Val GH_VOLUME_PRICE Val date_security
0 01-01-1990 1.0 7.0 01-01-1990
1 01-02-1990 3.0 8.0 03-01-1990
2 NaN NaN NaN 04-01-1990
DG_LAST_PRICE Val DG_VOLUME_PRICE Val
0 2 10.0
1 20 NaN
2 30 1.0
dfs = [x.set_index(x.columns[0]).dropna()
for i, x in df.groupby(level=0, axis=1)]
df2 = pd.concat(dfs, axis=1)
#flatten MultiIndex
df2.columns = df2.columns.map('_'.join)
print (df2)
0_GH_LAST_PRICE Val 0_GH_VOLUME_PRICE Val 1_DG_LAST_PRICE Val \
01-01-1990 1.0 7.0 2.0
01-02-1990 3.0 8.0 NaN
04-01-1990 NaN NaN 30.0
1_DG_VOLUME_PRICE Val
01-01-1990 10.0
01-02-1990 NaN
04-01-1990 1.0