Если вы начинаете с DataFrame, например:
df_transf_1.show(truncate=False)
#+--------------------------------+------------------------------+
#|user_id |products_basket |
#+--------------------------------+------------------------------+
#|b5ad805c-f295-4852-82fc-961a88 |12732936 |
#|0FD6955D-484C-4FC8-8C3F-DA7D28 |['Gklb38', '123655'] |
#|0E3D17EA-BEEF-4931-8104 |12909841 |
#|CC2877D0-A15C-4C0A-AD65-762A35C1|[12645715, 12909837, 12909837]|
#+--------------------------------+------------------------------+
, где столбец products_basket
равен StringType
:
df.printSchema()
#root
# |-- user_id: string (nullable = true)
# |-- products_basket: string (nullable = true)
Вы не можете позвонить explode
на products_basket
, потому что это не массив или карта.
Один из обходных путей - убрать все начальные / конечные квадратные скобки, а затем разбить строку на ", "
(запятая с последующим пробелом).Это преобразует строку в массив строк.
from pyspark.sql.functions import col, regexp_replace, split
df_transf_new= df_transf_1.withColumn(
"products_basket",
split(regexp_replace(col("products_basket"), r"(^\[)|(\]$)|(')", ""), ", ")
)
df_transf_new.show(truncate=False)
#+--------------------------------+------------------------------+
#|user_id |products_basket |
#+--------------------------------+------------------------------+
#|b5ad805c-f295-4852-82fc-961a88 |[12732936] |
#|0FD6955D-484C-4FC8-8C3F-DA7D28 |[Gklb38, 123655] |
#|0E3D17EA-BEEF-4931-8104 |[12909841] |
#|CC2877D0-A15C-4C0A-AD65-762A35C1|[12645715, 12909837, 12909837]|
#+--------------------------------+------------------------------+
Шаблон регулярного выражения соответствует любому из следующего:
(^\[)
: открывающая квадратная скобка в началестроки (\]$)
: закрывающая квадратная скобка в конце строки (')
: любая одинарная кавычка (потому что строки указаны в кавычках)
и заменяет их пустой строкой.
Предполагается, что ваши данные не содержат необходимых одинарных кавычек или квадратных скобок внутри product_basket
.
После split
схема нового DataFrame выглядит следующим образом:
df_transf_new.printSchema()
#root
# |-- user_id: string (nullable = true)
# |-- products_basket: array (nullable = true)
# | |-- element: string (containsNull = true)
Теперь вы можете звонить explode
:
from pyspark.sql.functions import explode
df_transf_new.withColumn("product_id", explode("products_basket")).show(truncate=False)
#+--------------------------------+------------------------------+----------+
#|user_id |products_basket |product_id|
#+--------------------------------+------------------------------+----------+
#|b5ad805c-f295-4852-82fc-961a88 |[12732936] |12732936 |
#|0FD6955D-484C-4FC8-8C3F-DA7D28 |[Gklb38, 123655] |Gklb38 |
#|0FD6955D-484C-4FC8-8C3F-DA7D28 |[Gklb38, 123655] |123655 |
#|0E3D17EA-BEEF-4931-8104 |[12909841] |12909841 |
#|CC2877D0-A15C-4C0A-AD65-762A35C1|[12645715, 12909837, 12909837]|12645715 |
#|CC2877D0-A15C-4C0A-AD65-762A35C1|[12645715, 12909837, 12909837]|12909837 |
#|CC2877D0-A15C-4C0A-AD65-762A35C1|[12645715, 12909837, 12909837]|12909837 |
#+--------------------------------+------------------------------+----------+