Я пытался выяснить, как сделать эти индексы ключами кортежей в pandas
, но я получаю ошибку.
Как я могу использовать предложение из ошибки с pd.Categorical
ниже, чтобы исправить эту ошибку?
Я знаю, что могу преобразовать в строку, но яЛюбопытно посмотреть, что подразумевается под предложением в сообщении об ошибке?
Это прекрасно работает, когда я запускаю его с 0.22.0
.Я открыл для этого проблему GitHub , если кто-то хочет увидеть правильный вывод 0.22.0
.
Я хочу обновить панд и правильно решить эту проблему.
Запуск этого с текущими пандами 0.23.4:
import sys; sys.version
# '3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 12:04:33) \n[GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)]'
import pandas as pd; pd.__version__
# '0.23.4'
index = [(('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 1)), (('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 2)), (('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 3)), (('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 5)), (('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 8)), (('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), (('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), (('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), (('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), (('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), (('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 1)), (('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 2)), (('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 3)), (('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 5)), (('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 8)), (('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 1)), (('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 2)), (('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 3)), (('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 5)), (('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 8)), (('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 1)), (('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 2)), (('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 3)), (('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 5)), (('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 8)), (('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), (('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), (('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), (('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), (('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), (('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 1)), (('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 2)), (('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 3)), (('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 5)), (('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 8)), (('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 1)), (('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 2)), (('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 3)), (('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 5)), (('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 8))]
len(index)
# 40
pd.Index(index)
Traceback (most recent call last):
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/core/algorithms.py", line 635, in factorize
order = uniques.argsort()
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/core/sorting.py", line 451, in safe_sort
sorter = values.argsort()
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 345, in __init__
codes, categories = factorize(values, sort=True)
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/util/_decorators.py", line 178, in wrapper
return func(*args, **kwargs)
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/core/algorithms.py", line 643, in factorize
assume_unique=True)
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/core/sorting.py", line 455, in safe_sort
ordered = sort_mixed(values)
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/core/sorting.py", line 441, in sort_mixed
nums = np.sort(values[~str_pos])
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/numpy/core/fromnumeric.py", line 847, in sort
a.sort(axis=axis, kind=kind, order=order)
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 449, in __new__
data, names=name or kwargs.get('names'))
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/core/indexes/multi.py", line 1330, in from_tuples
return MultiIndex.from_arrays(arrays, sortorder=sortorder, names=names)
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/core/indexes/multi.py", line 1274, in from_arrays
labels, levels = _factorize_from_iterables(arrays)
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 2543, in _factorize_from_iterables
return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 2543, in <listcomp>
return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 2515, in _factorize_from_iterable
cat = Categorical(values, ordered=True)
File "/Users/jespinoz/anaconda/envs/py3_testing/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 351, in __init__
raise TypeError("'values' is not ordered, please "
TypeError: 'values' is not ordered, please explicitly specify the categories order by passing in a categories argument