Попытка разбить строку в sparklyr, а затем использовать ее для объединений / фильтрации.
Я попробовал предложенный подход, состоящий в том, чтобы разбить строку на части, а затем разделить ее на новые столбцы.Вот воспроизводимый пример (обратите внимание, что я должен перевести свой NA, который после copy_to превращается в строку «NA», в фактический NA, есть ли способ сделать это не нужно)
x <- data.frame(Id=c(1,2,3,4),A=c('A-B','A-C','A-D',NA))
df <- copy_to(sc,x,'df')
df %>% mutate(A = ifelse(A=='NA',NA,A)) %>% ft_regex_tokenizer(input.col="A", output.col="B", pattern="-",to_lower_case=F) %>%
sdf_separate_column("B", into=c("C", "D")) %>% filter(C=='A')
Проблема в том, еслиЯ пытаюсь отфильтровать по вновь созданным столбцам (например, %>% filter(C=='A')
или присоединиться к ним, я получаю сообщение об ошибке, см. Ниже
Error : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 367.0 failed 4 times, most recent failure: Lost task 0.3 in stage 367.0 (TID 5062, 10.139.64.4, executor 0): org.apache.spark.SparkException: Failed to execute user defined function($anonfun$createTransformFunc$2: (string) => array<string>)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$11$$anon$1.hasNext(WholeStageCodegenExec.scala:622)
at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.encodeUnsafeRows(UnsafeRowBatchUtils.scala:51)
at org.apache.spark.sql.execution.collect.Collector$$anonfun$2.apply(Collector.scala:148)
at org.apache.spark.sql.execution.collect.Collector$$anonfun$2.apply(Collector.scala:147)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.doRunTask(Task.scala:139)
at org.apache.spark.scheduler.Task.run(Task.scala:112)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$13.apply(Executor.scala:497)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1432)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:503)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.NullPointerException
at java.util.regex.Matcher.getTextLength(Matcher.java:1283)
at java.util.regex.Matcher.reset(Matcher.java:309)
at java.util.regex.Matcher.<init>(Matcher.java:229)
at java.util.regex.Pattern.matcher(Pattern.java:1093)
at java.util.regex.Pattern.split(Pattern.java:1206)
at java.util.regex.Pattern.split(Pattern.java:1273)
at scala.util.matching.Regex.split(Regex.scala:526)
at org.apache.spark.ml.feature.RegexTokenizer$$anonfun$createTransformFunc$2.apply(Tokenizer.scala:144)
at org.apache.spark.ml.feature.RegexTokenizer$$anonfun$createTransformFunc$2.apply(Tokenizer.scala:141)
... 15 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2100)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2088)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2087)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2087)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:1076)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:1076)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1076)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2319)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2267)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2255)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:873)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2252)
at org.apache.spark.sql.execution.collect.Collector.runSparkJobs(Collector.scala:259)
at org.apache.spark.sql.execution.collect.Collector.collect(Collector.scala:269)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:69)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:75)
at org.apache.spark.sql.execution.ResultCacheManager.getOrComputeResult(ResultCacheManager.scala:497)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollectResult(limit.scala:48)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectResult(Dataset.scala:2827)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3439)
at org.apache.spark.sql.Dataset$$anonfun$collect$1.apply(Dataset.scala:2794)
at org.apache.spark.sql.Dataset$$anonfun$collect$1.apply(Dataset.scala:2794)
at org.apache.spark.sql.Dataset$$anonfun$54.apply(Dataset.scala:3423)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withCustomExecutionEnv$1.apply(SQLExecution.scala:99)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:228)
at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:85)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:158)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withAction(Dataset.scala:3422)
at org.apache.spark.sql.Dataset.collect(Dataset.scala:2794)
at sparklyr.Utils$.collect(utils.scala:200)
at sparklyr.Utils.collect(utils.scala)
at sun.reflect.GeneratedMethodAccessor577.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at sparklyr.Invoke.invoke(invoke.scala:139)
at sparklyr.StreamHandler.handleMethodCall(stream.scala:123)
at sparklyr.StreamHandler.read(stream.scala:66)
at sparklyr.BackendHandler.channelRead0(handler.scala:51)
at sparklyr.BackendHandler.channelRead0(handler.scala:4)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:102)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:310)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:284)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1359)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:935)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:138)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:645)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:580)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:497)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:459)
at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:858)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:138)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkExcepti
In addition: Warning messages:
1: The parameter `input.col` is deprecated and will be removed in a future release. Please use `input_col` instead.
2: The parameter `output.col` is deprecated and will be removed in a future release. Please use `output_col` instead
Не уверен, почему, поскольку тип создаваемых столбцов "StringType" в соответствии сsdf_schema.
Существует ли решение, использующее sparklyr для фактического разделения на столбцы, которое я могу использовать позже как строки без необходимости записывать кадр в файл или собирать данные на узел драйвера?