ValueError: Найдены входные переменные с непоследовательным количеством выборок: [4162, 3] - PullRequest
0 голосов
/ 04 февраля 2019

Я сталкиваюсь с ошибкой при построении моей путаницы.Я даю метки теста и мою прогнозируемую метку в функции запутанной матрицы, но она дает мне ошибку значения, имеющую проблему с количеством выборок.

Форма моих данных ниже.

Trainig Data Shape (4162, 224, 224, 3)
Training Data Labels Shape (4162, 5)
Testing Data Shape (3921, 224, 224, 3)
Testing Data Labels Shape (3921, 5)

Predicted Label немного некрасиво из-за пробежки всего 2 эпох, я просто хотел сначала построить матрицу путаницы, вот почему.

predictingimage = "D:/compCarsThesisData/data/image/78/3/2010/0ba8d018cdc994.jpg" #67/1698/2010/6805eb92ac6c70.jpg"
predictImageRead = mpg.imread(predictingimage)

resizingImage = cv2.cv2.resize(predictImageRead,(224,224))
reshapedFinalImage = np.expand_dims(resizingImage, axis=0)
npimage = np.asarray(reshapedFinalImage)
m = model.predict(npimage)
print(m)
[array([[0.02502811, 0.01959323, 0.6556284 , 0.26472655, 0.03502375]],
      dtype=float32), array([[5.8234303e-04, 3.1917400e-04, 9.4957882e-01, 1.8873921e-02,
        3.0645736e-02]], dtype=float32), array([[0.02581117, 0.04752538, 0.81816435, 0.04812173, 0.06037736]],
      dtype=float32)]

cm = confusion_matrix(train_labels_Encode,m)
plt.imshow(cm)
plt.show()

ОШИБКА

Traceback (most recent call last):
  File "d:/ThesisWork/seriouswork/Inception_SVM_CompCarsGoogleNetArchitecture.py", line 299, in <module>
    cm = confusion_matrix(train_labels_hotEncode,n)
  File "C:\Users\zeele\Miniconda3\lib\site-packages\sklearn\metrics\classification.py", line 253, in confusion_matrix
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
  File "C:\Users\zeele\Miniconda3\lib\site-packages\sklearn\metrics\classification.py", line 71, in _check_targets
    check_consistent_length(y_true, y_pred)
  File "C:\Users\zeele\Miniconda3\lib\site-packages\sklearn\utils\validation.py", line 235, in check_consistent_length
    " samples: %r" % [int(l) for l in lengths])
ValueError: Found input variables with inconsistent numbers of samples: [4162, 3]

Код классификатора:

X_train = np.load('D:/Inception_preprocessed_data_Labels_2004/Top5/TrainingData_Top5.npy')#('D:/ThesisWork/S_224_Training_data.npy')#training_images
X_test = np.load('D:/Inception_preprocessed_data_Labels_2004/Top5/TrainingLabels_Top5.npy')#('D:/ThesisWork/S_224_Training_labels.npy')#training_labels
y_train = np.load('D:/Inception_preprocessed_data_Labels_2004/Top5/TestingData_Top5.npy')#('D:/ThesisWork/S_224_Testing_data.npy')#testing_images 
y_test = np.load('D:/Inception_preprocessed_data_Labels_2004/Top5/TestingLabels_Top5.npy')#('D:/ThesisWork/S_224_Testing_labels.npy')#testing_labels
print(X_test)
le = preprocessing.LabelEncoder()
le.fit(X_test)
transform_trainLabels = le.transform(X_test)
print(transform_trainLabels)
print(le.inverse_transform(transform_trainLabels))

train_labels_hotEncode = np_utils.to_categorical(transform_trainLabels,len(set(transform_trainLabels)))
shuffle(X_train)
shuffle(train_labels_hotEncode)
le2 = preprocessing.LabelEncoder()
le2.fit(y_test)
transform_testLabels = le2.transform(y_test)


test_labels_hotEncode = np_utils.to_categorical(transform_testLabels,len(set(transform_testLabels)))
print(test_labels_hotEncode.shape)
shuffle(y_train)
shuffle(test_labels_hotEncode)
# print(train_labels_hotEncode[3000])
# exit()
# X_train = np.asarray(X_train / 255.0)
# y_train = np.asarray(y_train / 255.0)

# print("X_Training" ,X_train.shape, X_train)
# print("X_TEST", X_test.shape)
# print("Y_train", y_train.shape)
# print("y_test", y_test.shape)
# exit()
# plt.imshow(X_train[1])
# print(X_test)
# plt.imshow(y_train[1])
# print(y_test)
# plt.show()

print("Trainig Data Shape",X_train.shape)
print("Training Data Labels Shape",train_labels_hotEncode.shape)
print("Testing Data Shape", y_train.shape)
print("Testing Data Labels Shape", test_labels_hotEncode.shape)

# X_train = np.array(X_train).astype(np.float32)
# y_train = np.array(y_train).astype(np.float32)

def inception_module(image, 
            filters_1x1, 
            filters_3x3_reduce, 
            filter_3x3,
            filters_5x5_reduce,
            filters_5x5, 
            filters_pool_proj, 
            name=None):
  conv_1x1 = Conv2D(filters_1x1, (1,1), padding='same', activation='relu', kernel_initializer=kernel_init, bias_initializer= bias_init)(image)
  conv_3x3 = Conv2D(filters_3x3_reduce, (1,1), padding='same', activation='relu', kernel_initializer=kernel_init, bias_initializer= bias_init)(image)
  conv_3x3 = Conv2D(filter_3x3,(3,3), padding='same', activation='relu', kernel_initializer=kernel_init, bias_initializer=bias_init)(conv_3x3)

  conv_5x5 = Conv2D(filters_5x5_reduce,(1,1), padding='same', activation='relu',kernel_initializer=kernel_init, bias_initializer= bias_init)(image)
  conv_5x5 = Conv2D(filters_5x5, (3,3), padding='same', activation='relu',kernel_initializer=kernel_init, bias_initializer=bias_init)(conv_5x5)

  pool_proj = MaxPool2D((3,3), strides=(1,1), padding='same')(image)
  pool_proj = Conv2D(filters_pool_proj, (1,1), padding='same', activation='relu', kernel_initializer=kernel_init, bias_initializer= bias_init)(pool_proj)

  output = concatenate([conv_1x1, conv_3x3, conv_5x5, pool_proj], axis=3, name=name)

  return output

kernel_init = keras.initializers.glorot_uniform()
bias_init = keras.initializers.Constant(value=0.2)
# IMG_SIZE = 64 
input_layer = Input(shape=(224,224,3))

image = Conv2D(64,(7,7),padding='same', strides=(2,2), activation='relu', name='conv_1_7x7/2', kernel_initializer=kernel_init, bias_initializer=bias_init)(input_layer)

image = MaxPool2D((3,3), padding='same', strides=(2,2), name='max_pool_1_3x3/2')(image)
image = Conv2D(64, (1,1), padding='same', strides=(1,1), activation='relu', name='conv_2a_3x3/1' )(image)
image = Conv2D(192, (3,3), padding='same', strides=(1,1), activation='relu', name='conv_2b_3x3/1')(image)
image = MaxPool2D((3,3), padding='same', strides=(2,2), name='max_pool_2_3x3/2')(image)

image = inception_module(image,
                    filters_1x1= 64,
                    filters_3x3_reduce= 96,
                    filter_3x3 = 128,
                    filters_5x5_reduce=16,
                    filters_5x5= 32,
                    filters_pool_proj=32,
                    name='inception_3a')

image = inception_module(image,
                            filters_1x1=128,
                            filters_3x3_reduce=128,
                            filter_3x3=192,
                            filters_5x5_reduce=32,
                            filters_5x5=96,
                            filters_pool_proj=64,
                            name='inception_3b')

image = MaxPool2D((3,3), padding='same', strides=(2,2), name='max_pool_3_3x3/2')(image)

image = inception_module(image, 
                            filters_1x1=192,
                            filters_3x3_reduce=96,
                            filter_3x3=208,
                            filters_5x5_reduce=16,
                            filters_5x5=48,
                            filters_pool_proj=64,
                            name='inception_4a')

image1 = AveragePooling2D((5,5), strides=3)(image)
image1 = Conv2D(128, (1,1), padding='same', activation='relu')(image1)
image1 = Flatten()(image1)
image1 = Dense(1024, activation='relu')(image1)
image1 = Dropout(0.7)(image1)
image1 = Dense(5, activation='softmax', name='auxilliary_output_1')(image1)

image = inception_module(image,
                            filters_1x1 = 160,
                            filters_3x3_reduce= 112,
                            filter_3x3= 224,
                            filters_5x5_reduce= 24,
                            filters_5x5= 64,
                            filters_pool_proj=64,
                            name='inception_4b')

image = inception_module(image,
                           filters_1x1= 128,
                           filters_3x3_reduce = 128,
                           filter_3x3= 256,
                           filters_5x5_reduce= 24,
                           filters_5x5=64,
                           filters_pool_proj=64,
                           name='inception_4c')

image = inception_module(image,
                           filters_1x1=112,
                           filters_3x3_reduce=144,
                           filter_3x3= 288,
                           filters_5x5_reduce= 32,
                           filters_5x5=64,
                           filters_pool_proj=64,
                           name='inception_4d')

image2 = AveragePooling2D((5,5), strides=3)(image)
image2 = Conv2D(128, (1,1), padding='same', activation='relu')(image2)
image2 = Flatten()(image2)
image2 = Dense(1024, activation='relu')(image2)
image2 = Dropout(0.7)(image2) #Changed from 0.7
image2 = Dense(5, activation='softmax', name='auxilliary_output_2')(image2)

image = inception_module(image,
                            filters_1x1=256,
                            filters_3x3_reduce=160,
                            filter_3x3=320,
                            filters_5x5_reduce=32,
                            filters_5x5=128,
                            filters_pool_proj=128,
                            name= 'inception_4e')

image = MaxPool2D((3,3), padding='same', strides=(2,2), name='max_pool_4_3x3/2')(image)

image = inception_module(image,
                           filters_1x1=256,
                           filters_3x3_reduce=160,
                           filter_3x3= 320,
                           filters_5x5_reduce=32,
                           filters_5x5= 128,
                           filters_pool_proj=128,
                           name='inception_5a')

image = inception_module(image, 
                           filters_1x1=384,
                           filters_3x3_reduce=192,
                           filter_3x3=384,
                           filters_5x5_reduce=48,
                           filters_5x5=128,
                           filters_pool_proj=128,
                           name='inception_5b')

image = GlobalAveragePooling2D(name='avg_pool_5_3x3/1')(image)

image = Dropout(0.7)(image)
image = Dense(5, activation='softmax', name='output')(image)

model = Model(input_layer, [image,image1,image2], name='inception_v1')

model.summary()


epochs = 2
initial_lrate = 0.001 # Changed From 0.01

def decay(epoch, steps=100):
  initial_lrate = 0.01
  drop = 0.96
  epochs_drop = 8
  lrate = initial_lrate * math.pow(drop,math.floor((1+epoch)/epochs_drop))#
  return lrate

sgd = keras.optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
# nadam = keras.optimizers.Nadam(lr= 0.002, beta_1=0.9, beta_2=0.999, epsilon=None)
# keras
lr_sc = LearningRateScheduler(decay)
# rms = keras.optimizers.RMSprop(lr = initial_lrate, rho=0.9, epsilon=1e-08, decay=0.0)
# ad = keras.optimizers.adam(lr=initial_lrate)
model.compile(loss=['categorical_crossentropy', 'categorical_crossentropy','categorical_crossentropy'],loss_weights=[1,0.3,0.3], optimizer='sgd', metrics=['accuracy'])

# loss = 'categorical_crossentropy', 'categorical_crossentropy','categorical_crossentropy'

history = model.fit(X_train, [train_labels_hotEncode,train_labels_hotEncode,train_labels_hotEncode], validation_split=0.3,shuffle=True,epochs=epochs, batch_size= 32, callbacks=[lr_sc]) # batch size changed from 256 or 64 to 16(y_train,[y_test,y_test,y_test])
# validation_data=(y_train,[test_labels_hotEncode,test_labels_hotEncode,test_labels_hotEncode]), validation_data= (X_train, [train_labels_hotEncode,train_labels_hotEncode,train_labels_hotEncode]),

print(history.history.keys())
plt.plot(history.history['output_acc'])
plt.plot(history.history['val_output_acc'])
plt.title('Model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'],loc = 'upper left')
plt.show()






# predictingimage = "D:/compCarsThesisData/data/image/78/3/2010/0ba8d018cdc994.jpg" #67/1698/2010/6805eb92ac6c70.jpg"
predictImageRead =  X_train
# resizingImage = cv2.cv2.resize(predictImageRead,(224,224))
# reshapedFinalImage = np.expand_dims(predictImageRead, axis=0)

# print(reshapedFinalImage.shape)
# npimage = np.array(reshapedFinalImage)
m = model.predict(predictImageRead)
print(m)
print(predictImageRead.shape)
print(train_labels_hotEncode)
# print(m.shape)
plt.imshow(predictImageRead[1])
plt.show()
# n = np.argmax(m,axis=-1)
# n = np.array(m)
print(confusion_matrix(X_test,m[0]))
cm = confusion_matrix(X_test,m[0])
plt.imshow(cm)
plt.show()

Пожалуйста, ознакомьте меня с этим.

Спасибо!

1 Ответ

0 голосов
/ 05 февраля 2019

Если вы хотите вычислить запутанную матрицу ваших тренировочных данных, вы должны сделать так, чтобы ваш moddel предсказал все ваших тренировочных примеров, примерно так:

m = model.predict(train_data) # train_data should have the shape (4162, 224, 224, 3)

mзатем иметь длину 4162 и вы можете построить матрицу путаницы следующим образом:

cm = confusion_matrix(train_labels_Encode, m)
plt.imshow(cm)
plt.show()
...