Я получил это на работу.Забудьте о сеансе при использовании керас, это только усложнит ситуацию.
import keras
import tensorflow as tf
import numpy as np
command_input = keras.layers.Input(shape=(1,1))
image_measurements_features = keras.layers.Input(shape=(1, 640))
command_module_layer1 = keras.layers.Dense(128 ,activation='relu')(command_input)
command_module_layer2 = keras.layers.Dense(128 ,activation='relu')(command_module_layer1)
j = keras.layers.concatenate([command_module_layer2, image_measurements_features])
desicion_module_layer1 = keras.layers.Dense(512,activation='relu')(j)
desicion_module_layer2 = keras.layers.Dense(256,activation='relu')(desicion_module_layer1)
desicion_module_layer3 = keras.layers.Dense(128,activation='relu')(desicion_module_layer2)
desicion_module_layer4 = keras.layers.Dense(3,activation='relu')(desicion_module_layer3)
big_hero_4 = keras.models.Model(inputs=[command_input, image_measurements_features], outputs=desicion_module_layer4)
big_hero_4.compile(optimizer='adam',loss='mean_squared_error',metrics=['accuracy'])
# Mock data
x = np.zeros((1, 1, 1))
y = np.zeros((1, 1, 640))
z = np.zeros((1, 1, 3))
historyy=big_hero_4.fit([x, y], z, batch_size=None, epochs=1,steps_per_epoch=1000)
Этот код должен начать обучение без проблем.Если у вас все еще есть та же ошибка, это может быть связано с какой-то другой частью вашего кода, если есть еще.