Я уже опубликовал ответ, который пытается решить проблему как можно проще, но я чувствовал, что было бы уместно предложить решение, которое также пытается максимизировать уникальность.Другой ответ уже охватывает основы этого, но не учитывает пары цветов, созданные из идентичных частей головоломки, поэтому я попытался сделать это здесь.
Этот решатель не самый быстрый, но гарантирует, что естьбудет не более двух одинаково окрашенных пар фигур между любыми двумя наборами.При запуске без тасования существует большой уклон к определенным цветам, берущим определенные куски, поэтому я привожу аргумент, чтобы перетасовать промежуточные массивы, чтобы устранить это смещение, за счет меньшего количества сгенерированных наборов (потенциально менее 28 - если это так, запустить снова).Программа выложит все найденные наборы, которые удовлетворяют вышеуказанным критериям, так что вы можете вручную выбрать тот, который 28 кажется наиболее «случайным» или «равномерным» для человеческого глаза.
from itertools import combinations, permutations
from random import shuffle
def get_subsets(color_set):
subsets = []
for d in ({}, {'1':'5'}, {'4':'6'}, {'1':'5', '4':'6'}):
tr = lambda s: str.translate(s, str.maketrans(d))
subsets.extend(set(tr(y) for y in x) for x in combinations(color_set, 3))
return subsets
def make_sets(do_random=True):
color_sets = [set(c+str(i) for i, c in enumerate(perm)) for perm in permutations("RGBYPOW")]
results, pairs = [], []
while color_sets:
results.append(color_sets[0])
pairs.extend(get_subsets(color_sets[0]))
color_sets = [x for x in color_sets if all(y - x for y in pairs)]
if do_random: shuffle(color_sets)
results = sorted(sorted(perm, key=lambda x:x[1]) for perm in results)
print("\n".join(map(str, results)))
print(len(results))
if __name__ == "__main__":
make_sets()
Пример вывода:
['B0', 'G1', 'O2', 'W3', 'P4', 'R5', 'Y6']
['B0', 'P1', 'W2', 'Y3', 'O4', 'G5', 'R6']
['B0', 'R1', 'W2', 'O3', 'G4', 'P5', 'Y6']
['B0', 'R1', 'Y2', 'P3', 'W4', 'O5', 'G6']
['B0', 'W1', 'R2', 'G3', 'O4', 'Y5', 'P6']
['G0', 'B1', 'O2', 'P3', 'R4', 'W5', 'Y6']
['G0', 'B1', 'R2', 'W3', 'Y4', 'O5', 'P6']
['G0', 'O1', 'P2', 'B3', 'W4', 'R5', 'Y6']
['G0', 'O1', 'Y2', 'R3', 'B4', 'W5', 'P6']
['G0', 'P1', 'O2', 'Y3', 'B4', 'R5', 'W6']
['G0', 'W1', 'P2', 'O3', 'R4', 'Y5', 'B6']
['O0', 'B1', 'Y2', 'W3', 'R4', 'P5', 'G6']
['O0', 'G1', 'R2', 'Y3', 'W4', 'P5', 'B6']
['O0', 'P1', 'G2', 'R3', 'Y4', 'B5', 'W6']
['O0', 'R1', 'B2', 'G3', 'P4', 'W5', 'Y6']
['P0', 'B1', 'R2', 'O3', 'W4', 'Y5', 'G6']
['P0', 'R1', 'G2', 'W3', 'B4', 'Y5', 'O6']
['P0', 'W1', 'B2', 'Y3', 'O4', 'R5', 'G6']
['P0', 'W1', 'G2', 'B3', 'Y4', 'O5', 'R6']
['R0', 'G1', 'B2', 'Y3', 'P4', 'O5', 'W6']
['R0', 'O1', 'P2', 'Y3', 'G4', 'W5', 'B6']
['R0', 'Y1', 'W2', 'P3', 'G4', 'B5', 'O6']
['W0', 'G1', 'B2', 'P3', 'R4', 'Y5', 'O6']
['W0', 'O1', 'P2', 'G3', 'Y4', 'B5', 'R6']
['W0', 'R1', 'Y2', 'G3', 'O4', 'P5', 'B6']
['W0', 'Y1', 'G2', 'O3', 'B4', 'P5', 'R6']
['W0', 'Y1', 'O2', 'R3', 'P4', 'G5', 'B6']
['Y0', 'B1', 'P2', 'R3', 'W4', 'G5', 'O6']
['Y0', 'G1', 'W2', 'O3', 'B4', 'R5', 'P6']
['Y0', 'O1', 'B2', 'G3', 'R4', 'P5', 'W6']
['Y0', 'P1', 'R2', 'B3', 'G4', 'W5', 'O6']
31