У меня есть то, что я считаю правильной реализацией алгоритма Миллера-Рабина с использованием Lua, и я пытаюсь получить последовательный возврат для простых чисел.Кажется, моя реализация работает только половину времени.Хотя, если я попытаюсь реализовать подобный код в Python, этот код работает 100% времени.Может ли кто-нибудь указать мне правильное направление?
--decompose n-1 as (2^s)*d
local function decompose(negOne)
exponent, remainder = 0, negOne
while (remainder%2) == 0 do
exponent = exponent+1
remainder = remainder/2
end
assert((2^exponent)*remainder == negOne and ((remainder%2) == 1), "Error setting up s and d value")
return exponent, remainder
end
local function isNotWitness(n, possibleWitness, exponent, remainder)
witness = (possibleWitness^remainder)%n
if (witness == 1) or (witness == n-1) then
return false
end
for _=0, exponent do
witness = (witness^2)%n
if witness == (n-1) then
return false
end
end
return true
end
--using miller-rabin primality testing
--n the integer to be tested, k the accuracy of the test
local function isProbablyPrime(n, accuracy)
if n <= 3 then
return n == 2 or n == 3
end
if (n%2) == 0 then
return false
end
exponent, remainder = decompose(n-1)
--checks if it is composite
for i=0, accuracy do
math.randomseed(os.time())
witness = math.random(2, n - 2)
if isNotWitness(n, witness, exponent, remainder) then
return false
end
end
--probably prime
return true
end
if isProbablyPrime(31, 30) then
print("prime")
else
print("nope")
end