У меня есть фрейм данных, на котором я построил прогнозную модель.Данные разделены на обучение и тестирование, и я использовал классификатор Randomforest.
Теперь пользователь передает новые данные, которые должны пройти через эту модель и дать результат.
Этотекстовые данные, а ниже - фрейм данных:
Description Category
Rejoin this domain Network
Laptop crashed Hardware
Installation Error Software
Код:
############### Feature extraction ##############
countvec = CountVectorizer()
counts = countvec.fit_transform(read_data['Description'])
df = pd.DataFrame(counts.toarray())
df.columns = countvec.get_feature_names()
print(df)
########## Join with original data ##############
df = read_data.join(df)
a = list(df.columns.values)
########## Creating the dependent variable class for "Category" variable
###########
factor = pd.factorize(df['Category'])
df.Category = factor[0]
definitions = factor[1]
print(df.Category.head())
print(definitions)
########## Creating the dependent variable class for "Description"
variable ###########
factor = pd.factorize(df['Description'])
df.Description = factor[0]
definitions_1 = factor[1]
print(df.Description.head())
print(definitions_1)
######### Split into Train and Test data #######################
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.80, random_state = 21)
############# Random forest classification model #########################
classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 42)
classifier.fit(X_train, y_train)
######### Predicting the Test set results ##############
y_pred = classifier.predict(X_test)
#####Reverse factorize (converting y_pred from 0s,1s and 2s to original class for "Category" ###############
reversefactor = dict(zip(range(3),definitions))
y_test = np.vectorize(reversefactor.get)(y_test)
y_pred = np.vectorize(reversefactor.get)(y_pred)
#####Reverse factorize (converting y_pred from 0s,1s and 2s to original class for "Description" ###############
reversefactor = dict(zip(range(53),definitions_1))
X_test = np.vectorize(reversefactor.get)(X_test)