@ ahbon , вы можете попробовать df.any()
.См. Следующую последовательность операторов, выполняемых на интерактивном терминале Python.
Проверка http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.any.html
>>> import numpy as np
>>> import pandas as pd
>>>
>>> df = pd.DataFrame({'a':[1,2,3],'b':[3,4,5],'c':[np.nan, np.nan, np.nan],'d':[np.nan, np.nan, np.nan]})
>>> df
a b c d
0 1 3 NaN NaN
1 2 4 NaN NaN
2 3 5 NaN NaN
>>>
>>> # Remove all columns having all NaN values using DataFrame.any()
...
>>> df_new = df.any()
>>> df_new
a True
b True
c False
d False
dtype: bool
>>>
Наконец,
>>> columns = []
>>>
>>> for key, value in df_new.iteritems():
... if value:
... columns.append(key)
...
>>> df = pd.DataFrame({'a':[1,2,3],'b':[3,4,5],'c':[np.nan, np.nan, np.nan],'d':[np.nan, np.nan, np.nan]}, columns=columns)
>>>
>>> df
a b
0 1 3
1 2 4
2 3 5
>>>