Это мой первый проект с использованием керас.
Идея состоит в том, чтобы создать модель, которая может определить цвет дерева.Если цвет, который я идентифицирую, я получаю 1
, если это не так, я получаю 0
.
У меня есть файл csv
, подобный этому:
red,green,blue,isWood
63,110,255,0
58,104,255,0
63,112,255,0
96,141,198,1
95,140,197,1
95,138,195,1
Я создал эту модель на основе комбинации нескольких учебных пособий, которые я нашел в Интернете.
import pandas as pd
train_df = pd.read_csv('woodData.csv')
train_df.head()
#create a dataframe with all training data except the target column
train_X = train_df.drop(columns=['isWood'])
#check that the target variable has been removed
train_X.head()
#create a dataframe with only the target column
train_y = train_df[['isWood']]
#view dataframe
train_y.head()
from keras.models import Sequential
from keras.layers import Dense
#create model
model = Sequential()
#get number of columns in training data
n_cols = train_X.shape[1]
#add model layers
model.add(Dense(10, activation='relu', input_shape=(n_cols,)))
model.add(Dense(10, activation='relu'))
model.add(Dense(1))
#compile model using mse as a measure of model performance
model.compile(optimizer='adam', loss='mean_squared_error')
# LINE 1
coreml_model = coremltools.converters.keras.convert(model, ['red','green','blue'], 'isWood')
coreml_model.input_description['red'] = 'red value'
coreml_model.input_description['green'] = 'green value'
coreml_model.input_description['blue'] = 'blue value'
coreml_model.output_description['isWood'] = '1 = is wood, 0 is not wood'
coreml_model.save('wood.mlmodel')
Это приложение упало на линии
coreml_model.input_description['green'] = 'green value'
со следующим сообщением об ошибке:
Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/coremltools/models/model.py in __setitem__(self, key, value)
77 f.shortDescription = value
78 return
---> 79 raise AttributeError("No feature with name %s." % key)
80
81 def __iter__(self):
AttributeError: No feature with name green.
Я пытался изменить LINE 1
на
coreml_model = coremltools.converters.keras.convert(model, input_names=['red','green','blue'], output_names='isWood')
или
coreml_model = coremltools.converters.keras.convert(model, input_names=['red','green','blue'], output_names=['isWood'])
без разницы.
Есть идеи?