Я новичок в Spark Framework и мне нужна помощь!
Предположим, что первый DataFrame (df1
) хранит время, когда пользователи получают доступ к колл-центру.
+---------+-------------------+
|USER_NAME| REQUEST_DATE|
+---------+-------------------+
| Mark|2018-02-20 00:00:00|
| Alex|2018-03-01 00:00:00|
| Bob|2018-03-01 00:00:00|
| Mark|2018-07-01 00:00:00|
| Kate|2018-07-01 00:00:00|
+---------+-------------------+
Второй DataFrame хранит информацию о том, является ли человек членом организации.OUT означает, что пользователь покинул организацию.IN
означает, что пользователь пришел в организацию.START_DATE
и END_DATE
означают начало и конец соответствующего процесса.
Например, вы можете видеть, что Alex
покинул организацию в 2018-01-01 00:00:00
, а этот процесс завершился в 2018-02-01 00:00:00
.Вы можете заметить, что один пользователь может приходить и уходить из организации в разное время: Mark
.
+---------+---------------------+---------------------+--------+
|NAME | START_DATE | END_DATE | STATUS |
+---------+---------------------+---------------------+--------+
| Alex| 2018-01-01 00:00:00 | 2018-02-01 00:00:00 | OUT |
| Bob| 2018-02-01 00:00:00 | 2018-02-05 00:00:00 | IN |
| Mark| 2018-02-01 00:00:00 | 2018-03-01 00:00:00 | IN |
| Mark| 2018-05-01 00:00:00 | 2018-08-01 00:00:00 | OUT |
| Meggy| 2018-02-01 00:00:00 | 2018-02-01 00:00:00 | OUT |
+----------+--------------------+---------------------+--------+
Я пытаюсь получить такой DataFrame в финале.Он должен содержать все записи из первого DataFrame плюс столбец, указывающий, является ли Person членом организации на момент запроса (REQUEST_DATE
) или нет.
+---------+-------------------+----------------+
|USER_NAME| REQUEST_DATE| USER_STATUS |
+---------+-------------------+----------------+
| Mark|2018-02-20 00:00:00| Our user |
| Alex|2018-03-01 00:00:00| Not our user |
| Bob|2018-03-01 00:00:00| Our user |
| Mark|2018-07-01 00:00:00| Our user |
| Kate|2018-07-01 00:00:00| No Information |
+---------+-------------------+----------------+
Я попробовал следующий код,но в finalDF
у меня ошибка:
org.apache.spark.SparkException: Task not serializable
Также в конечном результате мне нужно datetime.Прямо сейчас в lastRowByRequestId
у меня есть только дата без времени.
КОД :
val df1 = Seq(
("Mark", "2018-02-20 00:00:00"),
("Alex", "2018-03-01 00:00:00"),
("Bob", "2018-03-01 00:00:00"),
("Mark", "2018-07-01 00:00:00"),
("Kate", "2018-07-01 00:00:00")
).toDF("USER_NAME", "REQUEST_DATE")
df1.show()
val df2 = Seq(
("Alex", "2018-01-01 00:00:00", "2018-02-01 00:00:00", "OUT"),
("Bob", "2018-02-01 00:00:00", "2018-02-05 00:00:00", "IN"),
("Mark", "2018-02-01 00:00:00", "2018-03-01 00:00:00", "IN"),
("Mark", "2018-05-01 00:00:00", "2018-08-01 00:00:00", "OUT"),
("Meggy", "2018-02-01 00:00:00", "2018-02-01 00:00:00", "OUT")
).toDF("NAME", "START_DATE", "END_DATE", "STATUS")
df2.show()
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.functions._
case class UserAndRequest(
USER_NAME:String,
REQUEST_DATE:java.sql.Date,
START_DATE:java.sql.Date,
END_DATE:java.sql.Date,
STATUS:String,
REQUEST_ID:Long
)
val joined : Dataset[UserAndRequest] = df1.withColumn("REQUEST_ID", monotonically_increasing_id).
join(df2,$"USER_NAME" === $"NAME", "left").
as[UserAndRequest]
val lastRowByRequestId = joined.
groupByKey(_.REQUEST_ID).
reduceGroups( (x,y) =>
if (x.REQUEST_DATE.getTime > x.END_DATE.getTime && x.END_DATE.getTime > y.END_DATE.getTime) x else y
).map(_._2)
def logic(status: String): String = {
if (status == "IN") "Our user"
else if (status == "OUT") "not our user"
else "No Information"
}
val logicUDF = udf(logic _)
val finalDF = lastRowByRequestId.withColumn("USER_STATUS",logicUDF($"REQUEST_DATE"))