Это еще один способ сделать это.Я также добавил некоторое сравнение времени с решением @ coldspeed
n = 2
a_new = np.tile(a.flatten(), n)
a_new.reshape((n*a.shape[0], a.shape[1]))
# array([[ 0, 1, 2, 3],
# [ 4, 5, 6, 7],
# [ 8, 9, 10, 11],
# [ 0, 1, 2, 3],
# [ 4, 5, 6, 7],
# [ 8, 9, 10, 11]])
Сравнение производительности с решением coldspeed
Мой метод для n = 10000
a = np.array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
n = 10000
def tile_flatten(a, n):
a_new = np.tile(a.flatten(), n).reshape((n*a.shape[0], a.shape[1]))
return a_new
%timeit tile_flatten(a,n)
# 149 µs ± 20.2 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
раствор Колдспида 1 для n = 10000
a = np.array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
n = 10000
def concatenate_repeat(a, n):
a_new = np.concatenate(np.repeat(a[None, :], n, axis=0), axis=0)
return a_new
%timeit concatenate_repeat(a,n)
# 7.61 ms ± 1.37 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
раствор Колдспида 2 для n = 10000
a = np.array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
n = 10000
def broadcast_reshape(a, n):
a_new = np.broadcast_to(a, (n, *a.shape)).reshape(-1, a.shape[1])
return a_new
%timeit broadcast_reshape(a,n)
# 162 µs ± 29.8 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
@ user2357112 решение
def tile_only(a, n):
a_new = np.tile(a, (n, 1))
return a_new
%timeit tile_only(a,n)
# 142 µs ± 21.8 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)