Как исправить исключение: java.math.BigDecimal не является допустимым внешним типом для схемы double при повторном применении схемы в кадре данных? - PullRequest
0 голосов
/ 06 февраля 2019

Я пытаюсь переместить данные из таблицы: system_releases из Greenplum в Hive следующим образом:

val yearDF = spark.read.format("jdbc").option("url", "urltemplate;MaxNumericScale=30;MaxNumericPrecision=40;")
                                      .option("dbtable", s"(${execQuery}) as year2016")
                                      .option("user", "user")
                                      .option("password", "pwd")
                                      .option("partitionColumn","release_number")
                                      .option("lowerBound", 306)
                                      .option("upperBound", 500)
                                      .option("numPartitions",2)
                                      .load()

Предполагаемая схема dataFrame yearDF по искре:

description:string
status_date:timestamp
time_zone:string
table_refresh_delay_min:decimal(38,30)
online_patching_enabled_flag:string
release_number:decimal(38,30)
change_number:decimal(38,30)
interface_queue_enabled_flag:string
rework_enabled_flag:string
smart_transfer_enabled_flag:string
patch_number:decimal(38,30)
threading_enabled_flag:string
drm_gl_source_name:string
reverted_flag:string
table_refresh_delay_min_text:string
release_number_text:string
change_number_text:string

Iиметь одну и ту же таблицу в улье со следующими типами данных:

val hiveCols=string,status_date:timestamp,time_zone:string,table_refresh_delay_min:double,online_patching_enabled_flag:string,release_number:double,change_number:double,interface_queue_enabled_flag:string,rework_enabled_flag:string,smart_transfer_enabled_flag:string,patch_number:double,threading_enabled_flag:string,drm_gl_source_name:string,reverted_flag:string,table_refresh_delay_min_text:string,release_number_text:string,change_number_text:string

Столбцы: table_refresh_delay_min, release_number, change_number and patch_number дают слишком много десятичных знаков, хотя в GP их немного.Поэтому я попытался сохранить его в виде файла CSV, чтобы взглянуть на то, как данные читаются с помощью spark.Например, максимальное число release_number для GP составляет: 306.00, но в файле csv я сохранил dataframe: yearDF, значение будет 306.000000000000000000.

Я попытался взять схему таблицы кустов и преобразовал ее в StructType для применениячто на yearDF, как показано ниже.

def convertDatatype(datatype: String): DataType = {
  val convert = datatype match {
    case "string"     => StringType
    case "bigint"     => LongType
    case "int"        => IntegerType
    case "double"     => DoubleType
    case "date"       => TimestampType
    case "boolean"    => BooleanType
    case "timestamp"  => TimestampType
  }
  convert
}

val schemaList        = hiveCols.split(",")
val schemaStructType  = new StructType(schemaList.map(col => col.split(":")).map(e => StructField(e(0), convertDatatype(e(1)), true)))
val newDF = spark.createDataFrame(yearDF.rdd, schemaStructType)
newDF.write.format("csv").save("hdfs/location")

Но я получаю ошибку:

Caused by: java.lang.RuntimeException: java.math.BigDecimal is not a valid external type for schema of double
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.evalIfFalseExpr8$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply_2$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:287)
    ... 17 more

Я попытался привести десятичные столбцы в DoubleType, как показано ниже, но я все еще сталкиваюсь с тем жеисключение.

  val pattern = """DecimalType\(\d+,(\d+)\)""".r
  val df2 = dataDF.dtypes.
    collect{ case (dn, dt) if pattern.findFirstMatchIn(dt).map(_.group(1)).getOrElse("0") != "0" => dn }.
    foldLeft(dataDF)((accDF, c) => accDF.withColumn(c, col(c).cast("Double")))

   Caused by: java.lang.RuntimeException: java.math.BigDecimal is not a valid external type for schema of double
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.evalIfFalseExpr8$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply_2$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:287)
    ... 17 more

У меня нет идей после попытки реализовать два вышеупомянутых способа.Может ли кто-нибудь дать мне знать, как правильно преобразовать столбцы информационного кадра в требуемые типы данных?

...