Я хочу создать случайный размер кадрирования при использовании API набора данных tenorflow с файлом tfrecord.Вот мой код
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(parse_func)
dataset = dataset.shuffle(buffer_size=10000).batch(batch_size).repeat()
iterator = dataset.make_initializable_iterator()
data_in_tsr, data_gt_tsr, = iterator.get_next()
def parse_func(example_proto):
features = {
'in': tf.FixedLenFeature(image_size, tf.float32),
'gt': tf.FixedLenFeature(image_size, tf.float32)}
parsed_features = tf.parse_single_example(example_proto, features)
mag_in = parsed_features['mag_in']
mag_gt = parsed_features['mag_gt']
# random crop 128x128
crop_sz = random.randint(mag_in.shape[0]//2, mag_in.shape[0])
mag_in = tf.random_crop(mag_in, (crop_sz, crop_sz, mag_in.shape[2]))
return mag_in, mag_gt
Проблема заключается в том, что функция map () вызывается ТОЛЬКО один раз, поэтому каждый раз выбирается случайный фрагмент фиксированного размера.Как создать случайный размер урожая?