KeyError: "Имя 'image_tensor: 0' - PullRequest
       26

KeyError: "Имя 'image_tensor: 0'

0 голосов
/ 06 февраля 2019

Я работаю над моделью обнаружения изображений и следую инструкциям, приведенным ниже. Ссылка https://pythonprogramming.net/training-custom-objects-tensorflow-object-detection-api-tutorial/?completed=/creating-tfrecord-files-tensorflow-object-detection-api-tutorial/

Хотя я обучил свою модель и также скачал frozen_inference_graph.pb, но при компиляции в блокнот jupyter я столкнулсяошибка "" graph. "% (repr (name), repr (op_name))) KeyError:" Имя 'image_tensor: 0' относится к Tensor, который не существует.Операция 'image_tensor' не существует на графике. "" пожалуйста, сообщите, поскольку я не могу найти решение.ниже код, который я использую:

    import numpy as np
    import os
    import six.moves.urllib as urllib
    import sys
    import tarfile
    import tensorflow as tf
    import zipfile
    import io
    import pandas as pd

    sys.path.append("C:\\...\\tensorflow\\models\\research\\")
    sys.path.append("C:\\...\\tensorflow\\models\\research\\object_detection\\utils")

    from distutils.version import StrictVersion
    from collections import defaultdict
    from io import StringIO
    from matplotlib import pyplot as plt
    from PIL import Image

    # This is needed since the notebook is stored in the object_detection folder.
    sys.path.append("..")
    from object_detection.utils import ops as utils_ops
    from object_detection.utils import dataset_util

    if StrictVersion(tf.__version__) < StrictVersion('1.9.0'):
      raise ImportError('Please upgrade your TensorFlow installation to v1.9.* or later!')

    # This is needed to display the images.
    %matplotlib inline

from utils import label_map_util
from utils import visualization_utils as vis_util

MODEL_NAME = 'Trained_inference_graph'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH = 'C:\\...\\Tensorflow\\models\\research\\object_detection\\inference_graph\\frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = 'C:\\...\\Tensorflow\\models\\research\\object_detection\\Training\\label_map.pbtxt'

Num_classes = 5

detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')

category_index = 

label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)

def load_image_into_numpy_array(image):
  (im_width, im_height) = image.size
  return np.array(image.getdata()).reshape(
      (im_height, im_width, 3)).astype(np.uint8)

PATH_TO_TEST_IMAGES_DIR = 'C:\\...\\Tensorflow\\models\\research\\object_detection\\test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(3, 7) ]

# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)

def run_inference_for_single_image(image, graph):
  with graph.as_default():
    with tf.Session() as sess:
      # Get handles to input and output tensors
      ops = tf.get_default_graph().get_operations()
      all_tensor_names = {output.name for op in ops for output in op.outputs}
      tensor_dict = {}
      for key in [
          'num_detections', 'detection_boxes', 'detection_scores',
          'detection_classes', 'detection_masks'
      ]:
        tensor_name = key + ':0'
        if tensor_name in all_tensor_names:
          tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
              tensor_name)
      if 'detection_masks' in tensor_dict:
        # The following processing is only for single image
        detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
        detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
        # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
        real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
        detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
        detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
        detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
            detection_masks, detection_boxes, image.shape[0], image.shape[1])
        detection_masks_reframed = tf.cast(
            tf.greater(detection_masks_reframed, 0.5), tf.uint8)
        # Follow the convention by adding back the batch dimension
        tensor_dict['detection_masks'] = tf.expand_dims(
            detection_masks_reframed, 0)
      image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

      # Run inference
      output_dict = sess.run(tensor_dict,
                             feed_dict={image_tensor: np.expand_dims(image, 0)})

      # all outputs are float32 numpy arrays, so convert types as appropriate
      output_dict['num_detections'] = int(output_dict['num_detections'][0])
      output_dict['detection_classes'] = output_dict[
          'detection_classes'][0].astype(np.uint8)
      output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
      output_dict['detection_scores'] = output_dict['detection_scores'][0]
      if 'detection_masks' in output_dict:
        output_dict['detection_masks'] = output_dict['detection_masks'][0]
  return output_dict

for image_path in TEST_IMAGE_PATHS:
  image = Image.open(image_path)
  # the array based representation of the image will be used later in order to prepare the
  # result image with boxes and labels on it.
  image_np = load_image_into_numpy_array(image)
  # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
  image_np_expanded = np.expand_dims(image_np, axis=0)
  # Actual detection.
  output_dict = run_inference_for_single_image(image_np, detection_graph)
  # Visualization of the results of a detection.
  vis_util.visualize_boxes_and_labels_on_image_array(
      image_np,
      output_dict['detection_boxes'],
      output_dict['detection_classes'],
      output_dict['detection_scores'],
      category_index,
      instance_masks=output_dict.get('detection_masks'),
      use_normalized_coordinates=True,
      line_thickness=8)
  plt.figure(figsize=IMAGE_SIZE)
  plt.imshow(image_np)

ОШИБКА

KeyError 
Traceback (most recent call last) <ipython-input-66-b19082c2666b> in <module>
      7   image_np_expanded = np.expand_dims(image_np, axis=0)
      8   # Actual detection.
----> 9   output_dict = run_inference_for_single_image(image_np, detection_graph)
     10   # Visualization of the results of a detection.
     11   vis_util.visualize_boxes_and_labels_on_image_array(

<ipython-input-65-f22e65a052c1> in run_inference_for_single_image(image, graph)
     29         tensor_dict['detection_masks'] = tf.expand_dims(
     30             detection_masks_reframed, 0)
---> 31       image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
     32 
     33       # Run inference

D:\anaconda\envs\tensorflow_cpu\lib\site-packages\tensorflow\python\framework\ops.py in get_tensor_by_name(self, name)    3664       raise TypeError("Tensor names are strings (or similar), not %s." %    3665   type(name).__name__)
-> 3666     return self.as_graph_element(name, allow_tensor=True, allow_operation=False)    3667     3668   def
_get_tensor_by_tf_output(self, tf_output):

D:\anaconda\envs\tensorflow_cpu\lib\site-packages\tensorflow\python\framework\ops.py in as_graph_element(self, obj, allow_tensor, allow_operation)    3488  3489     with self._lock:
-> 3490       return self._as_graph_element_locked(obj, allow_tensor, allow_operation)    3491     3492   def _as_graph_element_locked(self, obj, allow_tensor, allow_operation):

D:\anaconda\envs\tensorflow_cpu\lib\site-packages\tensorflow\python\framework\ops.py in _as_graph_element_locked(self, obj, allow_tensor, allow_operation)  3530           raise KeyError("The name %s refers to a Tensor which does not "    3531                          "exist. The operation, %s, does not exist in the "
-> 3532                          "graph." % (repr(name), repr(op_name)))    3533         try:    3534           return op.outputs[out_n]

KeyError: "The name 'image_tensor:0' refers to a Tensor which does not exist. The operation, 'image_tensor', does not exist in the graph."
...