Справочная информация:
Я написал модель TensorFlow, очень похожую на готовую модель классификации радужной оболочки , предоставленную TensorFlow.Различия относительно незначительны:
- Я классифицирую футбольные упражнения, а не виды радужной оболочки.
- У меня есть 10 функций и одна метка, а не 4 функции и одна метка.
- У меня есть 5 различных упражнений, в отличие от 3 видов радужной оболочки.
- Мои данные trainData содержат около 3500 строк, а не только 120.
- Мои данные testData содержат около 330 строк, а не только 30.
- Я использую классификатор DNN с n_classes = 6, а не 3.
Теперь я хочу экспортировать модель в виде .tflite
файла.Но в соответствии с TensorFlow Developer Guide мне нужно сначала экспортировать модель в файл tf.GraphDef
, затем заморозить ее, и только тогда я смогу преобразовать ее.Однако учебник , предоставленный TensorFlow для создания файла .pb
из пользовательской модели, кажется оптимизированным только для моделей классификации изображений.
Вопрос:
Так как мне преобразовать модель, подобную модели примера классификации радужной оболочки, в файл .tflite
?Есть ли более простой и прямой способ сделать это, не экспортируя его в файл .pb
, затем заморозив его и так далее?Пример, основанный на коде классификации радужной оболочки или ссылке на более подробное руководство, будет очень полезен!
Другая информация:
- ОС:macOS 10.13.4 High Sierra
- Версия TensorFlow: 1.8.0
- Версия Python: 3.6.4
- Использование сообщества PyCharm 2018.1.3
Код:
Код классификации радужной оболочки можно клонировать, введя следующую команду:
git clone https://github.com/tensorflow/models
Но если вы этого не сделаетехочу скачать весь пакет, вот он:
Это файл классификатора с именем premade_estimator.py
:
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An Example of a DNNClassifier for the Iris dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import tensorflow as tf
import iris_data
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=100, type=int, help='batch size')
parser.add_argument('--train_steps', default=1000, type=int,
help='number of training steps')
def main(argv):
args = parser.parse_args(argv[1:])
# Fetch the data
(train_x, train_y), (test_x, test_y) = iris_data.load_data()
# Feature columns describe how to use the input.
my_feature_columns = []
for key in train_x.keys():
my_feature_columns.append(tf.feature_column.numeric_column(key=key))
# Build 2 hidden layer DNN with 10, 10 units respectively.
classifier = tf.estimator.DNNClassifier(
feature_columns=my_feature_columns,
# Two hidden layers of 10 nodes each.
hidden_units=[10, 10],
# The model must choose between 3 classes.
n_classes=3)
# Train the Model.
classifier.train(
input_fn=lambda: iris_data.train_input_fn(train_x, train_y,
args.batch_size),
steps=args.train_steps)
# Evaluate the model.
eval_result = classifier.evaluate(
input_fn=lambda: iris_data.eval_input_fn(test_x, test_y,
args.batch_size))
print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))
# Generate predictions from the model
expected = ['Setosa', 'Versicolor', 'Virginica']
predict_x = {
'SepalLength': [5.1, 5.9, 6.9],
'SepalWidth': [3.3, 3.0, 3.1],
'PetalLength': [1.7, 4.2, 5.4],
'PetalWidth': [0.5, 1.5, 2.1],
}
predictions = classifier.predict(
input_fn=lambda: iris_data.eval_input_fn(predict_x,
labels=None,
batch_size=args.batch_size))
template = '\nPrediction is "{}" ({:.1f}%), expected "{}"'
for pred_dict, expec in zip(predictions, expected):
class_id = pred_dict['class_ids'][0]
probability = pred_dict['probabilities'][class_id]
print(template.format(iris_data.SPECIES[class_id],
100 * probability, expec))
if __name__ == '__main__':
# tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main)
И это файл данных с именем iris_data.py
:
import pandas as pd
import tensorflow as tf
TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"
CSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth',
'PetalLength', 'PetalWidth', 'Species']
SPECIES = ['Setosa', 'Versicolor', 'Virginica']
def maybe_download():
train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1], TRAIN_URL)
test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1], TEST_URL)
return train_path, test_path
def load_data(y_name='Species'):
"""Returns the iris dataset as (train_x, train_y), (test_x, test_y)."""
train_path, test_path = maybe_download()
train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=0)
train_x, train_y = train, train.pop(y_name)
test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0)
test_x, test_y = test, test.pop(y_name)
return (train_x, train_y), (test_x, test_y)
def train_input_fn(features, labels, batch_size):
"""An input function for training"""
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
# Shuffle, repeat, and batch the examples.
dataset = dataset.shuffle(1000).repeat().batch(batch_size)
# Return the dataset.
return dataset
def eval_input_fn(features, labels, batch_size):
"""An input function for evaluation or prediction"""
features = dict(features)
if labels is None:
# No labels, use only features.
inputs = features
else:
inputs = (features, labels)
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices(inputs)
# Batch the examples
assert batch_size is not None, "batch_size must not be None"
dataset = dataset.batch(batch_size)
# Return the dataset.
return dataset
** ОБНОВЛЕНИЕ **
Хорошо, поэтому я нашел, казалось бы, очень полезный кусок кода на этой странице :
import tensorflow as tf
img = tf.placeholder(name="img", dtype=tf.float32, shape=(1, 64, 64, 3))
val = img + tf.constant([1., 2., 3.]) + tf.constant([1., 4., 4.])
out = tf.identity(val, name="out")
with tf.Session() as sess:
tflite_model = tf.contrib.lite.toco_convert(sess.graph_def, [img], [out])
open("test.tflite", "wb").write(tflite_model)
Этот маленький парень напрямую преобразует простую модель в модель TensorFlow Lite.Теперь все, что мне нужно сделать, это найти способ адаптировать это к модели классификации радужной оболочки.Есть предложения?