Ресурс 's3' не существует - PullRequest
       8

Ресурс 's3' не существует

0 голосов
/ 29 сентября 2018

Я использовал Python и boto3 для обработки некоторых файлов S3 на спарке, и когда я загружал файлы, это было необычно: ресурс 's3' не существует.

Поскольку boto3 не установлен на каждомузел кластера, я упаковал пакеты зависимостей, используемые boto3, как zip и использовал кластер spark, представленный - py-files, и произошло это исключение.

    Py4JJavaErrorTraceback (most recent call last)
<ipython-input-3-8147865bf49c> in <module>()
      2 
      3 
----> 4 extractor.extract(paths)

/usr/local/lib/python2.7/site-packages/extract-1.0-py2.7.egg/extract.pyc in extract(self, target_files_path)
     52         try:
     53             sc = self.get_spark_context()
---> 54             self._extract_file(sc, target_files_path)
     55         finally:
     56             if sc:

/usr/local/lib/python2.7/site-packages/extract-1.0-py2.7.egg/extract.pyc in _extract_file(self, sc, target_files_path)
    109     def _extract_file(self, sc, target_files_path):
    110         file_rdd = sc.parallelize(target_files_path, len(target_files_path))
--> 111         result_rdd = file_rdd.map(lambda file_path: self.process(file_path, self.func)).collect()
    112         result_rdd.saveAsTextFile(self.result_path)
    113 

/usr/lib/spark/python/pyspark/rdd.py in collect(self)
    769         """
    770         with SCCallSiteSync(self.context) as css:
--> 771             port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
    772         return list(_load_from_socket(port, self._jrdd_deserializer))
    773 

/usr/lib/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
    811         answer = self.gateway_client.send_command(command)
    812         return_value = get_return_value(
--> 813             answer, self.gateway_client, self.target_id, self.name)
    814 
    815         for temp_arg in temp_args:

/usr/lib/spark/python/lib/py4j-0.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    306                 raise Py4JJavaError(
    307                     "An error occurred while calling {0}{1}{2}.\n".
--> 308                     format(target_id, ".", name), value)
    309             else:
    310                 raise Py4JError(

Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 2 in stage 0.0 failed 4 times, most recent failure: Lost task 2.3 in stage 0.0 (TID 15, ip-172-20-219-210.corp.hpicloud.net): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/mnt/yarn/usercache/chqiang/appcache/application_1521024688288_67008/container_1521024688288_67008_01_000002/pyspark.zip/pyspark/worker.py", line 111, in main
    process()
  File "/mnt/yarn/usercache/chqiang/appcache/application_1521024688288_67008/container_1521024688288_67008_01_000002/pyspark.zip/pyspark/worker.py", line 106, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/mnt/yarn/usercache/chqiang/appcache/application_1521024688288_67008/container_1521024688288_67008_01_000002/pyspark.zip/pyspark/serializers.py", line 263, in dump_stream
    vs = list(itertools.islice(iterator, batch))
  File "/usr/local/lib/python2.7/site-packages/extract-1.0-py2.7.egg/extract.py", line 111, in <lambda>
  File "./lib.zip/extract.py", line 115, in process
    local_path = download_file_from_s3(self.app_name, file_path)
  File "./lib.zip/extract.py", line 22, in download_file_from_s3
    s3 = boto3.resource('s3')
  File "./lib.zip/boto3/__init__.py", line 100, in resource
    return _get_default_session().resource(*args, **kwargs)
  File "./lib.zip/boto3/session.py", line 347, in resource
    has_low_level_client)
ResourceNotExistsError: The 's3' resource does not exist.
The available resources are:
   - 


    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:166)
    at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:207)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:125)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
    at org.apache.spark.scheduler.Task.run(Task.scala:89)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
    at scala.Option.foreach(Option.scala:236)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:927)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
    at org.apache.spark.rdd.RDD.collect(RDD.scala:926)
    at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:405)
    at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:606)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
    at py4j.Gateway.invoke(Gateway.java:259)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:209)
    at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/mnt/yarn/usercache/chqiang/appcache/application_1521024688288_67008/container_1521024688288_67008_01_000002/pyspark.zip/pyspark/worker.py", line 111, in main
    process()
  File "/mnt/yarn/usercache/chqiang/appcache/application_1521024688288_67008/container_1521024688288_67008_01_000002/pyspark.zip/pyspark/worker.py", line 106, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/mnt/yarn/usercache/chqiang/appcache/application_1521024688288_67008/container_1521024688288_67008_01_000002/pyspark.zip/pyspark/serializers.py", line 263, in dump_stream
    vs = list(itertools.islice(iterator, batch))
  File "/usr/local/lib/python2.7/site-packages/extract-1.0-py2.7.egg/extract.py", line 111, in <lambda>
  File "./lib.zip/extract.py", line 115, in process
    local_path = download_file_from_s3(self.app_name, file_path)
  File "./lib.zip/extract.py", line 22, in download_file_from_s3
    s3 = boto3.resource('s3')
  File "./lib.zip/boto3/__init__.py", line 100, in resource
    return _get_default_session().resource(*args, **kwargs)
  File "./lib.zip/boto3/session.py", line 347, in resource
    has_low_level_client)
ResourceNotExistsError: The 's3' resource does not exist.
The available resources are:
   - 


    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:166)
    at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:207)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:125)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
    at org.apache.spark.scheduler.Task.run(Task.scala:89)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    ... 1 more

Не могли бы вы мне помочь?спасибо!

Ответы [ 2 ]

0 голосов
/ 07 мая 2019

Я столкнулся с той же ошибкой сегодня.Я попытался исправить это, используя клиент вместо ресурса, однако это выдало еще одну ошибку.

botocore.exceptions.DataNotFoundError: Unable to load data for: endpoints

Я немного погуглил и пришел к выводу, что заархивировать пакет boto3 невозможно, так как в результате его упаковки получаетсяв потере нескольких .json файлов.endpoints.json является одним из них.Он существует в вашей директории botocore/data, но когда вы заархивируете его, у него его нет.

Решение состоит в том, чтобы установить boto3 во время начальной загрузки.Вы можете создать файл начальной загрузки и предоставить его во время процесса создания кластера (для этого есть опция в консоли AWS EMR).Это установит boto3 на главный узел и все подчиненные узлы.

Вы также можете обратиться к следующему ответу: boto3 не может создать клиента на работнике pyspark?

0 голосов
/ 30 сентября 2018

Я упаковал пакеты зависимостей как whl-файлы вместо zip-пакетов, затем добавил их все к параметру --py-files (например, a.whl,b.whl,c.whl), изменил s3=boto3.resource('s3') в коде на client=boto3.client('s3') и попытался добиться успеха

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...