Использование concat
с max
:
df['TR'] = pd.concat([(df['high'] - df['low']),
(df['high'] - df['adjclose'].shift(1)).abs(),
(df['low'] - df['adjclose'].shift(1))], axis=1).max(axis=1)
Образец :
df = pd.DataFrame({'high':[4,5,4,5,5,4],
'low':[7,8,9,4,2,3],
'adjclose':[1,3,5,7,1,0]})
print (df)
adjclose high low
0 1 4 7
1 3 5 8
2 5 4 9
3 7 5 4
4 1 5 2
5 0 4 3
df['TR'] = pd.concat([(df['high']-df['low']),
(df['high'] - df['adjclose'].shift(1)).abs(),
(df['low'] - df['adjclose'].shift(1))], axis=1).max(axis=1)
print (df)
adjclose high low TR
0 1 4 7 -3.0
1 3 5 8 7.0
2 5 4 9 6.0
3 7 5 4 1.0
4 1 5 2 3.0
5 0 4 3 3.0
Деталь :
print (pd.concat([(df['high']-df['low']),
(df['high'] - df['adjclose'].shift(1)).abs(),
(df['low'] - df['adjclose'].shift(1))], axis=1))
0 1 2
0 -3 NaN NaN
1 -3 4.0 7.0
2 -5 1.0 6.0
3 1 0.0 -1.0
4 3 2.0 -5.0
5 1 3.0 2.0
Numpy решение отличается, потому что максимум NaN
в строке снова NaN
:
df['TR1'] = np.max(np.c_[(df['high']-df['low']),
(df['high'] - df['adjclose'].shift(1)).abs(),
(df['low'] - df['adjclose'].shift(1))], axis=1)
print (df)
adjclose high low TR1
0 1 4 7 NaN
1 3 5 8 7.0
2 5 4 9 6.0
3 7 5 4 1.0
4 1 5 2 3.0
5 0 4 3 3.0
print (np.c_[(df['high']-df['low']),
(df['high'] - df['adjclose'].shift(1)).abs(),
(df['low'] - df['adjclose'].shift(1))])
[[-3. nan nan]
[-3. 4. 7.]
[-5. 1. 6.]
[ 1. 0. -1.]
[ 3. 2. -5.]
[ 1. 3. 2.]]