Я думаю, что ни одно из значений не сохраняется как строковое значение в вашей df.Вы можете легко заменить его нулевым значением.Если вы хотите, вы также можете заполнить их пустым значением
>>> data = sc.parallelize([
... ('FYWN1wneV18bWNgQj','7:30-17:0','7:30-17:0','7:30-17:0','7:30-17:0','7:30-17:0','None','None'),
... ('He-G7vWjzVUysIKrf','9:0-20:0','9:0-20:0','9:0-20:0','9:0-20:0','9:0-16:0','8:0-16:0','None'),
... ('KQPW8lFf1y5BT2Mxi','None','None','None','None','None','None','None')
... ])
>>>
>>> cols = ['business_id','monday','tuesday','wednesday',' thursday','friday','saturday','sunday']
>>>
>>> df = spark.createDataFrame(data, cols)
>>>
>>> df.show()
+-----------------+---------+---------+---------+---------+---------+--------+------+
| business_id| monday| tuesday|wednesday| thursday| friday|saturday|sunday|
+-----------------+---------+---------+---------+---------+---------+--------+------+
|FYWN1wneV18bWNgQj|7:30-17:0|7:30-17:0|7:30-17:0|7:30-17:0|7:30-17:0| None| None|
|He-G7vWjzVUysIKrf| 9:0-20:0| 9:0-20:0| 9:0-20:0| 9:0-20:0| 9:0-16:0|8:0-16:0| None|
|KQPW8lFf1y5BT2Mxi| None| None| None| None| None| None| None|
+-----------------+---------+---------+---------+---------+---------+--------+------+
>>> df.replace('None',None).show()
+-----------------+---------+---------+---------+---------+---------+--------+------+
| business_id| monday| tuesday|wednesday| thursday| friday|saturday|sunday|
+-----------------+---------+---------+---------+---------+---------+--------+------+
|FYWN1wneV18bWNgQj|7:30-17:0|7:30-17:0|7:30-17:0|7:30-17:0|7:30-17:0| null| null|
|He-G7vWjzVUysIKrf| 9:0-20:0| 9:0-20:0| 9:0-20:0| 9:0-20:0| 9:0-16:0|8:0-16:0| null|
|KQPW8lFf1y5BT2Mxi| null| null| null| null| null| null| null|
+-----------------+---------+---------+---------+---------+---------+--------+------+
>>> df.replace('None',None).na.fill('').show()
+-----------------+---------+---------+---------+---------+---------+--------+------+
| business_id| monday| tuesday|wednesday| thursday| friday|saturday|sunday|
+-----------------+---------+---------+---------+---------+---------+--------+------+
|FYWN1wneV18bWNgQj|7:30-17:0|7:30-17:0|7:30-17:0|7:30-17:0|7:30-17:0| | |
|He-G7vWjzVUysIKrf| 9:0-20:0| 9:0-20:0| 9:0-20:0| 9:0-20:0| 9:0-16:0|8:0-16:0| |
|KQPW8lFf1y5BT2Mxi| | | | | | | |
+-----------------+---------+---------+---------+---------+---------+--------+------+