Поскольку вы знаете форму X
, вы можете использовать np.random.choice
для генерации случайных (row, col)
местоположений в X
:
h, w = X.shape
rows = np.random.choice(h, size=n)
cols = np.random.choice(w, size=n)
Основная трудность заключается в том, как проверить, если (row, col)
- ненулевое местоположение в X
.Вот способ сделать это: сделать новый редкий X
, который равен 1, где X
отличен от нуля.Затем создайте новую разреженную матрицу, Y
, с ненулевыми значениями в случайных местах, сгенерированных выше.Затем вычтите :
Y = Y - X.multiply(Y)
Эта разреженная матрица Y
будет равна нулю везде, где X
отлично от нуля.Так что если нам удалось сгенерировать достаточно ненулевых значений в Y
, то мы можем использовать их (row, col)
местоположения в качестве возвращаемого значения для sample_negs
:
import unittest
import sys
import numpy as np
import scipy.sparse as sparse
def sample_negs(X, n=3, replace=False):
N = np.prod(X.shape)
m = N - X.size
if n == 0:
result = []
elif (n < 0) or (not replace and m < n) or (replace and m == 0):
raise ValueError("{n} samples from {m} locations do not exist"
.format(n=n, m=m))
elif n/m > 0.5:
# Y (in the else clause, below) would be pretty dense so there would be no point
# trying to use sparse techniques. So let's use hpaulj's idea
# (https://stackoverflow.com/a/53577267/190597) instead.
import warnings
warnings.filterwarnings("ignore", category=sparse.SparseEfficiencyWarning)
Y = sparse.coo_matrix(X == 0)
rows = Y.row
cols = Y.col
idx = np.random.choice(len(rows), size=n, replace=replace)
result = list(zip(rows[idx], cols[idx]))
else:
X_row, X_col = X.row, X.col
X_data = np.ones(X.size)
X = sparse.coo_matrix((X_data, (X_row, X_col)), shape=X.shape)
h, w = X.shape
Y = sparse.coo_matrix(X.shape)
Y_size = 0
while Y_size < n:
m = n - Y.size
Y_data = np.concatenate([Y.data, np.ones(m)])
Y_row = np.concatenate([Y.row, np.random.choice(h, size=m)])
Y_col = np.concatenate([Y.col, np.random.choice(w, size=m)])
Y = sparse.coo_matrix((Y_data, (Y_row, Y_col)), shape=X.shape)
# Remove values in Y where X is nonzero
# This also consolidates (row, col) duplicates
Y = sparse.coo_matrix(Y - X.multiply(Y))
if replace:
Y_size = Y.data.sum()
else:
Y_size = Y.size
if replace:
rows = np.repeat(Y.row, Y.data.astype(int))
cols = np.repeat(Y.col, Y.data.astype(int))
idx = np.random.choice(rows.size, size=n, replace=False)
result = list(zip(rows[idx], cols[idx]))
else:
rows = Y.row
cols = Y.col
idx = np.random.choice(rows.size, size=n, replace=False)
result = list(zip(rows[idx], cols[idx]))
return result
class Test(unittest.TestCase):
def setUp(self):
import warnings
warnings.filterwarnings("ignore", category=sparse.SparseEfficiencyWarning)
self.ncols, self.nrows = 100, 100
self.X = sparse.random(self.ncols, self.nrows, density=0.05, format='coo')
Y = sparse.coo_matrix(self.X == 0)
self.expected = set(zip(Y.row, Y.col))
def test_n_too_large(self):
self.assertRaises(ValueError, sample_negs, self.X, n=100*100+1, replace=False)
X_dense = sparse.coo_matrix(np.ones((4,2)))
self.assertRaises(ValueError, sample_negs, X_dense, n=1, replace=True)
def test_no_replacement(self):
for m in range(100):
negative_list = sample_negs(self.X, n=m, replace=False)
negative_set = set(negative_list)
self.assertEqual(len(negative_list), m)
self.assertLessEqual(negative_set, self.expected)
def test_no_repeats_when_replace_is_false(self):
negative_list = sample_negs(self.X, n=10, replace=False)
self.assertEqual(len(negative_list), len(set(negative_list)))
def test_dense_replacement(self):
N = self.ncols * self.nrows
m = N - self.X.size
for i in [-1, 0, 1]:
negative_list = sample_negs(self.X, n=m+i, replace=True)
negative_set = set(negative_list)
self.assertEqual(len(negative_list), m+i)
self.assertLessEqual(negative_set, self.expected)
def test_sparse_replacement(self):
for m in range(100):
negative_list = sample_negs(self.X, n=m, replace=True)
negative_set = set(negative_list)
self.assertEqual(len(negative_list), m)
self.assertLessEqual(negative_set, self.expected)
if __name__ == '__main__':
sys.argv.insert(1,'--verbose')
unittest.main(argv = sys.argv)
, поскольку sample_negs
довольно сложноЯ включил некоторые модульные тесты, чтобы проверить разумное поведение.