Я пытаюсь создать классификатор изображений, но я сталкиваюсь с ошибкой, упомянутой в заголовке этого поста.Ниже приведен код, над которым я работаю.Как мне преобразовать мой массив numpy, который имеет форму (8020,) в форму, как того требует функция fit ()?Я попытался напечатать форму ввода: train_img_array.shape [1:], но она дает пустую форму: ()
import numpy as np
img_train.shape
img_valid.shape
img_train.head(5)
img_valid.head(5)
(8020, 4)
(2006, 4)
ID index class data
8030 11596 11596 0 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
2152 11149 11149 0 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
550 10015 10015 0 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
1740 9035 9035 0 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
9549 8218 8218 1 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
ID index class data
3312 5481 5481 0 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
9079 10002 10002 0 [[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], ...
6129 11358 11358 0 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
1147 2613 2613 1 [[[255, 255, 255, 0], [255, 255, 255, 0], [255...
7105 5442 5442 1 [[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], ...
img_train.dtypes
ID int64
index int64
class int64
data object
dtype: object
train_img_array = np.array([])
train_id_array = np.array([])
train_lab_array = np.array([])
train_id_array = img_train['ID'].values
train_lab_array = img_train['class'].values
train_img_array =img_train['data'].values
train_img_array.shape
train_lab_array.shape
train_id_array.shape
(8020,)
(8020,)
(8020,)
# Importing the Keras libraries and other packages
#matplotlib inline
from __future__ import print_function
import keras
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.layers import Dropout
Using Theano backend.
WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
classifier = Sequential()
classifier.add(Conv2D(32, (3, 3), padding='same', activation='relu', input_shape = (256, 256, 3)))
classifier.add(Conv2D(32, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Dropout(0.25))
classifier.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
classifier.add(Conv2D(64, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Dropout(0.25))
classifier.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
classifier.add(Conv2D(64, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Dropout(0.25))
classifier.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
classifier.add(Conv2D(64, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Dropout(0.25))
classifier.add(Flatten())
classifier.add(Dense(units = 256, activation = 'relu'))
classifier.add(Dropout(0.25))
classifier.add(Dense(units = 1, activation = 'sigmoid')) classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
classifier.summary()
batch_size = 32
epochs = 15
history = classifier.fit(train_img_array, train_lab_array, batch_size=batch_size, epochs=epochs, verbose=1,
validation_data=(valid_img_array, valid_lab_array))
classifier.evaluate(valid_img_array, valid_lab_array)
ValueError: Error when checking input: expected conv2d_1_input to have 4 dimensions, but got array with shape (8020, 1)
Редактировать: ----------------------------------------------------------- Как просил Нассим, добавивЕще несколько подробностей к этому посту:
print(train_img_array)
[ array([[[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0],
...,
[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0]],
[[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0],
...,
...,
[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0]]], dtype=uint8)
array([[[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0],
...,
...,
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]]], dtype=uint8)]
print(list(train_img_array))
[array([[[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0],
...,
[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0]],
[[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0],
...,
...,
[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0]]], dtype=uint8), array([[[255, 255, 255, 0],
[255, 255, 255, 0],
[255, 255, 255, 0],
...,
print(np.array(list(train_img_array)))
throws the error:
ValueError: could not broadcast input array from shape (700,584,4) into shape (700,584)