Я тренирую модель случайного леса следующим образом:
//Indexer
val stringIndexers = categoricalColumns.map { colName =>
new StringIndexer()
.setInputCol(colName)
.setOutputCol(colName + "Idx")
.setHandleInvalid("keep")
.fit(training)
}
//HotEncoder
val encoders = featuresEnconding.map { colName =>
new OneHotEncoderEstimator()
.setInputCols(Array(colName + "Idx"))
.setOutputCols(Array(colName + "Enc"))
.setHandleInvalid("keep")
}
//Adding features into a feature vector column
val assembler = new VectorAssembler()
.setInputCols(featureColumns)
.setOutputCol("features")
val rf = new RandomForestRegressor()
.setLabelCol("label")
.setFeaturesCol("features")
val stepsRF = stringIndexers ++ encoders ++ Array(assembler, rf)
val pipelineRF = new Pipeline()
.setStages(stepsRF)
val paramGridRF = new ParamGridBuilder()
.addGrid(rf.maxBins, Array(800))
.addGrid(rf.featureSubsetStrategy, Array("all"))
.addGrid(rf.minInfoGain, Array(0.05))
.addGrid(rf.minInstancesPerNode, Array(1))
.addGrid(rf.maxDepth, Array(28,29,30))
.addGrid(rf.numTrees, Array(20))
.build()
//Defining the evaluator
val evaluatorRF = new RegressionEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
//Using cross validation to train the model
//Start with TrainSplit -Cross Validations taking so long so far
val cvRF = new CrossValidator()
.setEstimator(pipelineRF)
.setEvaluator(evaluatorRF)
.setEstimatorParamMaps(paramGridRF)
.setNumFolds(10)
.setParallelism(3)
//Fitting the model with our training dataset
val cvRFModel = cvRF.fit(training)
Теперь мне хотелось бы получить важность каждой из функций модели после обучения.
Я могу понять важность каждой функции в виде массива [Double], выполняя это так:
val bestModel = cvRFModel.bestModel.asInstanceOf[PipelineModel]
val size = bestModel.stages.size-1
val ftrImp = bestModel.stages(size).asInstanceOf[RandomForestRegressionModel].featureImportances.toArray
Но я получаю только важность каждой функции и числовой индекс, но я не знаюЯ знаю, каково имя функции в моей модели, которое соответствует каждому значению важности.
Я также хотел бы отметить, что, поскольку я использую hotencoder, окончательное количество объектов намного больше, чем исходный массив featureColumns.
Как извлечь названия элементов, использованных во время обучения моей модели?