Как установить оценку ошибки для кривой обучения (склеарн) для регрессии? - PullRequest
0 голосов
/ 03 декабря 2018

Моя кривая обучения выглядит странно.Потому что оценка ошибок увеличивается.Я использовал RandomForestRegressor () в качестве модели и установил rmse_error в качестве метода оценки cross_val_score ().Я думаю, что оценка (ошибка) является правильной, но на кривой обучения ниже, оценка увеличивается.Как мне изменить код?

def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                    n_jobs=-1, train_sizes=np.linspace(.1, 1.0, 5)):

    plt.figure()
    plt.title(title)
    if ylim is not None:
        plt.ylim(*ylim)
    plt.xlabel("Training examples")
    plt.ylabel("Score")
    train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv,n_jobs=n_jobs, train_sizes=train_sizes)
    train_scores_mean = np.mean(train_scores, axis=1)
    train_scores_std = np.std(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    test_scores_std = np.std(test_scores, axis=1)
    plt.grid()

    plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                 train_scores_mean + train_scores_std, alpha=0.1,
                 color="r")
    plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                 test_scores_mean + test_scores_std, alpha=0.1, color="g")
    plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
         label="Training score")
    plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
         label="Cross-validation score")

    plt.legend(loc="best")
    return plt


g = plot_learning_curve(best_RFR,"RF learning curves",X_train,Y_train,cv=10)

картинка кривой обучения

...