Я подгоняю модель SVM, используя
m <- svm(training_S$Class~., data = training_S)
Где training_S
выглядит так:
> str(training_S)
'data.frame': 21173 obs. of 31 variables:
$ L2A_T30STG_20170601T110651_B02_10m: num 1546 1579 1506 1555 1580 ...
$ L2A_T30STG_20170601T110651_B03_10m: num 1882 1895 1841 1871 1851 ...
$ L2A_T30STG_20170601T110651_B04_10m: num 2187 2191 2161 2175 2166 ...
$ L2A_T30STG_20170601T110651_B08_10m: num 2269 2323 2225 2229 2270 ...
$ L2A_T30STG_20170601T110651_B11_20m: num 2555 2595 2555 2555 2595 ...
$ L2A_T30STG_20170601T110651_B12_20m: num 2026 2049 2026 2026 2049 ...
$ L2A_T30STG_20170611T110621_B02_10m: num 1442 1459 1399 1401 1425 ...
$ L2A_T30STG_20170611T110621_B03_10m: num 1772 1813 1751 1759 1777 ...
$ L2A_T30STG_20170611T110621_B04_10m: num 2091 2086 2038 2068 2082 ...
$ L2A_T30STG_20170611T110621_B08_10m: num 2524 2530 2408 2460 2502 ...
$ L2A_T30STG_20170611T110621_B11_20m: num 2581 2603 2581 2581 2603 ...
$ L2A_T30STG_20170611T110621_B12_20m: num 2025 2035 2025 2025 2035 ...
$ L2A_T30STG_20170621T110651_B02_10m: num 1176 1174 1168 1179 1136 ...
$ L2A_T30STG_20170621T110651_B03_10m: num 1454 1444 1471 1471 1450 ...
$ L2A_T30STG_20170621T110651_B04_10m: num 1590 1609 1616 1605 1581 ...
$ L2A_T30STG_20170621T110651_B08_10m: num 2627 2650 2553 2613 2612 ...
$ L2A_T30STG_20170621T110651_B11_20m: num 2365 2365 2365 2365 2365 ...
$ L2A_T30STG_20170621T110651_B12_20m: num 1730 1708 1730 1730 1708 ...
$ L2A_T30STG_20170701T111051_B02_10m: num 890 875 895 888 927 ...
$ L2A_T30STG_20170701T111051_B03_10m: num 1270 1246 1259 1285 1270 ...
$ L2A_T30STG_20170701T111051_B04_10m: num 1280 1295 1251 1260 1293 ...
$ L2A_T30STG_20170701T111051_B08_10m: num 3467 3444 3445 3459 3422 ...
$ L2A_T30STG_20170701T111051_B11_20m: num 2381 2368 2381 2381 2368 ...
$ L2A_T30STG_20170701T111051_B12_20m: num 1591 1583 1591 1591 1583 ...
$ L2A_T30STG_20170711T110651_B02_10m: num 564 643 588 629 660 578 705 627 603 564 ...
$ L2A_T30STG_20170711T110651_B03_10m: num 1038 1034 1024 1056 1065 ...
$ L2A_T30STG_20170711T110651_B04_10m: num 810 804 807 816 836 785 918 851 826 734 ...
$ L2A_T30STG_20170711T110651_B08_10m: num 4053 4061 4097 4021 4058 ...
$ L2A_T30STG_20170711T110651_B11_20m: num 2196 2173 2196 2196 2173 ...
$ L2A_T30STG_20170711T110651_B12_20m: num 1258 1243 1258 1258 1243 ...
$ Class : Factor w/ 6 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
После подгонки модели у меня возникают проблемы с интерпретацией plot
моей модели SVM.Используя следующий код, чтобы увидеть плоскость между этими двумя переменными:
plot(m,training_S, L2A_T30STG_20170601T110651_B02_10m ~ L2A_T30STG_20170711T110651_B04_10m)
Я получил это, что мне трудно интерпретировать.Я делаю что-то не так в своей технике интерпретации?
Только для дополнительной информации, я использовал это руководство как ссылку http://uc -r.github.io / svm