Я пытаюсь выполнить большое количество операций над кадром данных из таблицы cassandra, а затем сохранить его в другой таблице.Одна из этих операций выглядит следующим образом:
val leadWindow = Window.partitionBy(col("id")).orderBy(col("timestamp").asc).rowsBetween(Window.currentRow, 2)
df.withColumn("lead1", lag(sum(col("temp1")).over(leadWindow), 2, 0))
Когда я выполняю свою работу, я получаю исключение о том, что операция lag
не может быть оценена ..
2018-10-08 12:02:22 INFO Cluster:1543 - New Cassandra host /127.0.0.1:9042 added
2018-10-08 12:02:22 INFO CassandraConnector:35 - Connected to Cassandra cluster: Test Cluster
2018-10-08 12:02:23 INFO CassandraSourceRelation:35 - Input Predicates: [IsNotNull(ts)]
2018-10-08 12:02:23 INFO CassandraSourceRelation:35 - Input Predicates: [IsNotNull(ts)]
Exception in thread "main" java.lang.UnsupportedOperationException: Cannot evaluate expression: lag(input[43, bigint, true], 2, 0)
at org.apache.spark.sql.catalyst.expressions.Unevaluable$class.doGenCode(Expression.scala:258)
at org.apache.spark.sql.catalyst.expressions.OffsetWindowFunction.doGenCode(windowExpressions.scala:326)
at org.apache.spark.sql.catalyst.expressions.Expression$$anonfun$genCode$2.apply(Expression.scala:107)
at org.apache.spark.sql.catalyst.expressions.Expression$$anonfun$genCode$2.apply(Expression.scala:104)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.catalyst.expressions.Expression.genCode(Expression.scala:104)
at org.apache.spark.sql.catalyst.expressions.BinaryExpression.nullSafeCodeGen(Expression.scala:496)
at org.apache.spark.sql.catalyst.expressions.BinaryExpression.defineCodeGen(Expression.scala:479)
at org.apache.spark.sql.catalyst.expressions.Add.doGenCode(arithmetic.scala:174)
at org.apache.spark.sql.catalyst.expressions.Expression$$anonfun$genCode$2.apply(Expression.scala:107)
at org.apache.spark.sql.catalyst.expressions.Expression$$anonfun$genCode$2.apply(Expression.scala:104)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.catalyst.expressions.Expression.genCode(Expression.scala:104)
at org.apache.spark.sql.catalyst.expressions.BinaryExpression.nullSafeCodeGen(Expression.scala:496)
at org.apache.spark.sql.catalyst.expressions.BinaryExpression.defineCodeGen(Expression.scala:479)
at org.apache.spark.sql.catalyst.expressions.BinaryComparison.doGenCode(predicates.scala:513)
at org.apache.spark.sql.catalyst.expressions.Expression$$anonfun$genCode$2.apply(Expression.scala:107)
at org.apache.spark.sql.catalyst.expressions.Expression$$anonfun$genCode$2.apply(Expression.scala:104)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.catalyst.expressions.Expression.genCode(Expression.scala:104)
at org.apache.spark.sql.catalyst.expressions.And.doGenCode(predicates.scala:397)
at org.apache.spark.sql.catalyst.expressions.Expression$$anonfun$genCode$2.apply(Expression.scala:107)
at org.apache.spark.sql.catalyst.expressions.Expression$$anonfun$genCode$2.apply(Expression.scala:104)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.catalyst.expressions.Expression.genCode(Expression.scala:104)
at org.apache.spark.sql.catalyst.expressions.CaseWhen$$anonfun$8.apply(conditionalExpressions.scala:202)
at org.apache.spark.sql.catalyst.expressions.CaseWhen$$anonfun$8.apply(conditionalExpressions.scala:201)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.immutable.List.map(List.scala:285)
at org.apache.spark.sql.catalyst.expressions.CaseWhen.doGenCode(conditionalExpressions.scala:201)
at org.apache.spark.sql.catalyst.expressions.Expression$$anonfun$genCode$2.apply(Expression.scala:107)
at org.apache.spark.sql.catalyst.expressions.Expression$$anonfun$genCode$2.apply(Expression.scala:104)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.catalyst.expressions.Expression.genCode(Expression.scala:104)
at org.apache.spark.sql.catalyst.expressions.Alias.genCode(namedExpressions.scala:142)
at org.apache.spark.sql.execution.ProjectExec$$anonfun$6.apply(basicPhysicalOperators.scala:60)
at org.apache.spark.sql.execution.ProjectExec$$anonfun$6.apply(basicPhysicalOperators.scala:60)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.AbstractTraversable.map(Traversable.scala:104)
at org.apache.spark.sql.execution.ProjectExec.doConsume(basicPhysicalOperators.scala:60)
at org.apache.spark.sql.execution.CodegenSupport$class.consume(WholeStageCodegenExec.scala:181)
at org.apache.spark.sql.execution.InputAdapter.consume(WholeStageCodegenExec.scala:354)
at org.apache.spark.sql.execution.InputAdapter.doProduce(WholeStageCodegenExec.scala:383)
at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:88)
at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:83)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.CodegenSupport$class.produce(WholeStageCodegenExec.scala:83)
at org.apache.spark.sql.execution.InputAdapter.produce(WholeStageCodegenExec.scala:354)
at org.apache.spark.sql.execution.ProjectExec.doProduce(basicPhysicalOperators.scala:45)
at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:88)
at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:83)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.CodegenSupport$class.produce(WholeStageCodegenExec.scala:83)
at org.apache.spark.sql.execution.ProjectExec.produce(basicPhysicalOperators.scala:35)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doCodeGen(WholeStageCodegenExec.scala:524)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:576)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.DeserializeToObjectExec.doExecute(objects.scala:89)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.Dataset.rdd$lzycompute(Dataset.scala:2975)
at org.apache.spark.sql.Dataset.rdd(Dataset.scala:2973)
at org.apache.spark.sql.cassandra.CassandraSourceRelation.insert(CassandraSourceRelation.scala:76)
at org.apache.spark.sql.cassandra.DefaultSource.createRelation(DefaultSource.scala:86)
at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:45)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:86)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:654)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:654)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:654)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:273)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:267)
at com.test.functions.package$ChecksFunctions.appendToTable(package.scala:66)
at com.test.TestFromCassandra$.main(TestFromCassandra.scala:66)
at com.test.TestFromCassandra.main(TestFromCassandra.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:894)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:198)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:228)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:137)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
2018-10-08 12:02:31 INFO CassandraConnector:35 - Disconnected from Cassandra cluster: Test Cluster
Строка номер 130 файла TestFromCassandra
является вызовом функции save()
.Я не нашел подобной проблемы в Stackoverflow ..
Кто-нибудь знает, почему я столкнулся с этим исключением?Есть ли у функции lag
какие-либо ограничения с функцией прокрутки sum
?
РЕДАКТИРОВАТЬ: Я нашел аналогичная проблема на Джира Спарк.Кажется, есть ошибка в функции filter
после ссылки на функцию window
, и так как соединитель cassandra фильтрует кадры данных на элементах первичного ключа (используя функцию isnotnull
) перед сохранением, это то, чтоможет вызвать исключение.Есть ли способ выполнить эту операцию, избегая этой ошибки, но без использования функции агрегирования?Или кто-то знает, как исправить эту ошибку?
EDIT 2: Я также пытался сохранить свой фрейм данных, используя записывающее устройство foreach
и функцию соединителя withSessionDo
, но все равно получаютакое же исключение .. Никто никогда не сталкивался с этой проблемой?
РЕДАКТИРОВАТЬ 3: Я нашел другой способ добиться желаемой операции:
val leadWindow = Window.partitionBy(col("id")).orderBy(col("timestamp").desc).rowsBetween(Window.currentRow, 2)
df.withColumn("lead1", sum(col("temp1")).over(leadWindow))
Проблемане из-за фильтра.Кажется, что просто невозможно использовать функцию задержки в выражении окна.