Не весь ответ (см. Последний абзац) .. но я думаю, что это даст вам то, что вы хотите.
library( data.table )
library( lubridate )
set.seed(13)
EffortType = sample(c("A","B","C"), 100, replace = TRUE)
On = sample(seq(as.POSIXct('2016/01/01 01:00:00'), as.POSIXct('2016/01/03 01:00:00'), by = "15 mins"), 100, replace=T)
Off = On + minutes(sample(1:60, 100, replace=T))
Effort1 = data.table(EffortType, On, Off)
EffortType2 = sample(c("A","B","C"), 100, replace = TRUE)
On = sample(seq(as.POSIXct('2016/01/01 12:00:00'), as.POSIXct('2016/01/03 12:00:00'), by = "15 mins"), 100, replace=T)
Off = On + minutes(sample(1:60, 100, replace=T))
Effort2 = data.table(EffortType2, On, Off)
#create DT of minutes, spanning your entire period.
dt.minutes <- data.table( On = seq(as.POSIXct('2016/01/01 01:00:00'), as.POSIXct('2016/01/03 12:00:00'), by = "1 mins"),
Off = seq(as.POSIXct('2016/01/01 01:00:00'), as.POSIXct('2016/01/03 12:00:00'), by = "1 mins") + 60 )
#prep for using foverlaps
setkey(Effort1, On, Off)
setkey(Effort2, On, Off)
#overlap join both efforts on the dt.minutes. note the use of "within" an "nomatch" to throw away minutes without events.
m1 <- foverlaps(dt.minutes, Effort1 ,type="within",nomatch=0L)
m2 <- foverlaps(dt.minutes, Effort2 ,type="within",nomatch=0L)
#bind together
result <- rbindlist(list(m1,m2))[, `:=`(On=i.On, Off = i.Off)][, `:=`(i.On = NULL, i.Off = NULL)]
#cast the result
result.cast <- dcast( result, On + Off ~ EffortType, value.var = "EffortType")
приводит к
head( result.cast, 10)
# On Off A B C
# 1: 2016-01-01 01:00:00 2016-01-01 01:01:00 1 0 1
# 2: 2016-01-01 01:01:00 2016-01-01 01:02:00 1 0 1
# 3: 2016-01-01 01:02:00 2016-01-01 01:03:00 1 0 1
# 4: 2016-01-01 01:03:00 2016-01-01 01:04:00 1 0 1
# 5: 2016-01-01 01:04:00 2016-01-01 01:05:00 1 0 1
# 6: 2016-01-01 01:05:00 2016-01-01 01:06:00 1 0 1
# 7: 2016-01-01 01:06:00 2016-01-01 01:07:00 1 0 1
# 8: 2016-01-01 01:07:00 2016-01-01 01:08:00 1 0 1
# 9: 2016-01-01 01:08:00 2016-01-01 01:09:00 1 0 1
# 10: 2016-01-01 01:09:00 2016-01-01 01:10:00 1 0 1
Иногда происходит событие 2-3 раза за одну и ту же минуту, как
# On Off A B C
#53: 2016-01-02 14:36:00 2016-01-02 14:37:00 2 2 3
Не уверен, как вы хотите суммировать это ...
Если вы можете рассматривать их как одну минуту, то: * 1012Я думаю, *
> sum( result.cast[A>0 & B==0, C==0, ] )
[1] 476
> sum( result.cast[A==0 & B>0, C==0, ] )
[1] 386
> sum( result.cast[A==0 & B==0, C>0, ] )
[1] 504
> sum( result.cast[A>0 & B>0, C==0, ] )
[1] 371
> sum( result.cast[A==0 & B>0, C>0, ] )
[1] 341
> sum( result.cast[A>0 & B==0, C>0, ] )
[1] 472
> sum( result.cast[A>0 & B>0, C>0, ] )
[1] 265
сделает все возможное, чтобы получить длительность в минутах (хотя, вероятно, это можно сделать гораздо умнее)