Ваш вопрос немного сложнее простого слияния, а outer
несколько не подходит для этой цели.Чтобы быть как можно более тщательным, мы хотим рассчитать расстояние между всеми комбинациями домов и станций, а затем оставить только ближайшую станцию на дом.Нам понадобятся два пакета:
library(tidyverse)
library(geosphere)
Сначала немного подготовки.distm
ожидает, что координаты будут упорядочены как первая долгота, вторая широта (у вас наоборот), так что давайте исправим это, назовем столбцы лучше и исправим опечатку, пока мы на нем:
houses <- data.frame(house_number = c(1:3),
lon_house = seq(1.4, 1.6, by = 0.1),
lat_house = seq(1.1, 1.3, by = 0.1)
)
stations <- data.frame(station_number = c(1:11),
lon_station = seq(2, 3, by = 0.1),
lat_station = seq(1, 2, by = 0.1)
)
Мы создадим «вложенные» фреймы данных, чтобы было проще хранить координаты вместе:
house_nest <- nest(houses, -house_number, .key = 'house_coords')
station_nest <- nest(stations, -station_number, .key = 'station_coords')
house_number house_coords
<int> <list>
1 1 <data.frame [1 × 2]>
2 2 <data.frame [1 × 2]>
3 3 <data.frame [1 × 2]>
station_number station_coords
<int> <list>
1 1 <data.frame [1 × 2]>
2 2 <data.frame [1 × 2]>
3 3 <data.frame [1 × 2]>
4 4 <data.frame [1 × 2]>
5 5 <data.frame [1 × 2]>
6 6 <data.frame [1 × 2]>
7 7 <data.frame [1 × 2]>
8 8 <data.frame [1 × 2]>
9 9 <data.frame [1 × 2]>
10 10 <data.frame [1 × 2]>
11 11 <data.frame [1 × 2]>
Используйте dplyr::crossing
для объединения каждой строки из обоих фреймов данных:
data.master <- crossing(house_nest, station_nest)
house_number house_coords station_number station_coords
<int> <list> <int> <list>
1 1 <data.frame [1 × 2]> 1 <data.frame [1 × 2]>
2 1 <data.frame [1 × 2]> 2 <data.frame [1 × 2]>
3 1 <data.frame [1 × 2]> 3 <data.frame [1 × 2]>
4 1 <data.frame [1 × 2]> 4 <data.frame [1 × 2]>
5 1 <data.frame [1 × 2]> 5 <data.frame [1 × 2]>
6 1 <data.frame [1 × 2]> 6 <data.frame [1 × 2]>
7 1 <data.frame [1 × 2]> 7 <data.frame [1 × 2]>
8 1 <data.frame [1 × 2]> 8 <data.frame [1 × 2]>
9 1 <data.frame [1 × 2]> 9 <data.frame [1 × 2]>
10 1 <data.frame [1 × 2]> 10 <data.frame [1 × 2]>
# ... with 23 more rows
Теперь, когда все это доступно, мы можем использовать distm
в каждом ряду для расчета расстояния и сохранять кратчайшее расстояние на дом:
data.dist <- data.master %>%
mutate(dist = map2_dbl(house_coords, station_coords, distm)) %>%
group_by(house_number) %>%
filter(dist == min(dist))
house_number house_coords station_number station_coords dist
<int> <list> <int> <list> <dbl>
1 1 <data.frame [1 × 2]> 1 <data.frame [1 × 2]> 67690.
2 2 <data.frame [1 × 2]> 1 <data.frame [1 × 2]> 59883.
3 3 <data.frame [1 × 2]> 1 <data.frame [1 × 2]> 55519.