Что я делаю неправильно?
TL; DR: Короче говоря, вы передаете одно и то же входное значение нескольким выходным значениям.Вот один пример в этой строке кода:
values[corr] = __shfl_sync(mask, loads[src_corr],
src_lane, warp_size);
Величина, представленная loads[src_corr]
, является инвариантной к циклу .Поэтому вы передаете это значение на 4 полосы деформации (через 4 итерации цикла), что означает, что значение занимает 4 выходных значения (что в точности соответствует вашим данным распечатки).Это не может быть правильным для транспонирования.
Взяв несколько более длинный взгляд, с другим примером из вашего кода:
Я не уверен, что могу прочитать ваши мысли, но, возможно, вы можетебыть сбитым с толку насчет операции деформацииВозможно, вы предположили, что целевая дорожка может выбрать, какое значение из массива исходной дорожки loads[]
желательно.Это не вариант.Линия назначения может выбирать только то значение, которое предоставлено исходной полосой.Давайте посмотрим на ваш цикл:
// This should provide 0 0 0 0 4 4 4 4 8 8 8 8 ...
#define base_idx(lane_id) (lane_id & (warp_size - ncorrs))
// This should provide 0 1 2 3 0 1 2 3 0 1 2 3
#define corr_idx(lane_id) (lane_id & (ncorrs - 1))
int n = blockIdx.x*blockDim.x + threadIdx.x;
int lane_id = threadIdx.x & (warp_size - 1);
...
// Input correlation handled by this thread
int src_corr = corr_idx(lane_id);
int mask = __activemask();
...
int loads[ncorrs];
int values[ncorrs];
...
#pragma unroll (ncorrs)
for(int corr=0; corr < ncorrs; ++corr)
{
int src_lane = base_idx(lane_id) + corr;
values[corr] = __shfl_sync(mask, loads[src_corr], src_lane, warp_size);
}
На первом проходе вышеупомянутого цикла src_lane
для линий варпа 0, 1, 2 и 3 будут равны 0. ЭтоЭто видно из приведенного выше кода или распечатайте его, если вы не уверены.Это означает, что полосы варпа 0-3 будут запрашивать независимо от того, какое значение предоставлено линией деформации 0. Значение, предоставляемое линией деформации 0, равно loads[src_corr]
, но интерпретация src_corr
здесь является любым значениемон имеет для полосы деформации 0. Поэтому одно и только одно значение будет распределено по полосам деформации 0-3.Это не может быть правильным для транспонирования;никакое входное значение не отображается в 4 местах на выходе.
Чтобы исправить это, нам нужно будет изменить вычисления как src_lane
, так и src_corr
.Нам также нужно будет изменить место хранения (индекс) для каждой полосы деформации при каждом прохождении цикла (я называю эту новую переменную dest
.) Мы можем думать о src_lane
как об определении целевого значениячто мой поток получит.Мы можем думать о src_corr
как о том, какое из моих значений я опубликую в другом потоке на этой итерации цикла.dest
- это место в моем массиве values[]
, в котором я буду хранить текущее полученное значение.Мы можем вывести необходимый шаблон, тщательно изучив взаимосвязь между входным значением в loads[]
, требуемым выходным местоположением в values[]
, принимая во внимание соответствующие полосы движения для источника и назначения.На первом проходе цикла нам нужен этот шаблон:
warp lane: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
src_lane: 0 8 16 24 1 9 17 25 2 10 18 26 3 11 19 27 4 ... (where my data comes from)
src_corr: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 ... (which value I am transmitting)
dest: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 ... (where I store the received value)
На втором проходе цикла нам нужен этот шаблон:
warp lane: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
src_lane: 8 16 24 0 9 17 25 1 10 18 26 2 11 19 27 3 19 ... (where my data comes from)
src_corr: 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 1 ... (which value I am transmitting)
dest: 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 ... (where I store the received value)
с соответствующими изменениями для 3-гои 4-й проход петли.Если мы реализуем эти шаблоны в коде для вашего цикла случайного воспроизведения, он может выглядеть примерно так:
$ cat t352.cu
#include <cstdlib>
#include <cstdio>
#include <assert.h>
#define ncorr 4
#define warp_size 32
template <int ncorrs>
__global__ void kernel(
int * input,
int * output,
int N)
{
// This should provide 0 0 0 0 4 4 4 4 8 8 8 8 ...
#define base_idx(lane_id) (lane_id & (warp_size - ncorrs))
// This should provide 0 1 2 3 0 1 2 3 0 1 2 3
#define corr_idx(lane_id) (lane_id & (ncorrs - 1))
int n = blockIdx.x*blockDim.x + threadIdx.x;
int lane_id = threadIdx.x & (warp_size - 1);
if(n >= N)
{ return; }
// Input correlation handled by this thread
int mask = __activemask();
if(threadIdx.x == 0)
{ printf("mask %d\n", mask); }
int loads[ncorrs];
int values[ncorrs];
#pragma unroll (ncorrs)
for(int corr=0; corr < ncorrs; ++corr)
{ loads[corr] = input[n + corr*N]; }
__syncthreads();
printf("[%d, %d] %d %d %d %d\n",
lane_id, base_idx(lane_id),
loads[0], loads[1],
loads[2], loads[3]);
#pragma unroll (ncorrs)
for(int corr=0; corr < ncorrs; ++corr)
{
int src_lane = ((lane_id+corr)%ncorrs)*(warp_size/ncorrs) + (lane_id/ncorrs);
int src_corr = ((ncorrs-corr)+(lane_id/(warp_size/ncorrs)))%ncorrs;
int dest = (lane_id+corr)%ncorrs;
values[dest] = __shfl_sync(mask, loads[src_corr],
src_lane, warp_size);
}
printf("[%d, %d] %d %d %d %d\n",
lane_id, base_idx(lane_id),
values[0], values[1],
values[2], values[3]);
#pragma unroll (ncorrs)
for(int corr=0; corr < ncorrs; ++corr)
{ output[n + corr*N] = values[corr]; }
}
void print_data(int * data, int N)
{
for(int n=0; n < N; ++n)
{
printf("% -3d: ", n);
for(int c=0; c < ncorr; ++c)
{
printf("%d ", data[n*ncorr + c]);
}
printf("\n");
}
}
int main(void)
{
int * host_input;
int * host_output;
int * device_input;
int * device_output;
int N = 32;
host_input = (int *) malloc(sizeof(int)*N*ncorr);
host_output = (int *) malloc(sizeof(int)*N*ncorr);
printf("malloc done\n");
cudaMalloc((void **) &device_input, sizeof(int)*N*ncorr);
cudaMalloc((void **) &device_output, sizeof(int)*N*ncorr);
printf("cudaMalloc done\n");
for(int i=0; i < N*ncorr; ++i)
{ host_input[i] = i; }
print_data(host_input, N);
dim3 block(256, 1, 1);
dim3 grid((block.x + N - 1) / N, 1, 1);
cudaMemcpy(device_input, host_input,
sizeof(int)*N*ncorr, cudaMemcpyHostToDevice);
printf("memcpy done\n");
kernel<4> <<<grid, block>>> (device_input, device_output, N);
cudaMemcpy(host_output, device_output,
sizeof(int)*N*ncorr, cudaMemcpyDeviceToHost);
print_data(host_output, N);
cudaFree(device_input);
cudaFree(device_output);
free(host_input);
free(host_output);
}
$ nvcc -o t352 t352.cu
$ cuda-memcheck ./t352
========= CUDA-MEMCHECK
malloc done
cudaMalloc done
0 : 0 1 2 3
1 : 4 5 6 7
2 : 8 9 10 11
3 : 12 13 14 15
4 : 16 17 18 19
5 : 20 21 22 23
6 : 24 25 26 27
7 : 28 29 30 31
8 : 32 33 34 35
9 : 36 37 38 39
10: 40 41 42 43
11: 44 45 46 47
12: 48 49 50 51
13: 52 53 54 55
14: 56 57 58 59
15: 60 61 62 63
16: 64 65 66 67
17: 68 69 70 71
18: 72 73 74 75
19: 76 77 78 79
20: 80 81 82 83
21: 84 85 86 87
22: 88 89 90 91
23: 92 93 94 95
24: 96 97 98 99
25: 100 101 102 103
26: 104 105 106 107
27: 108 109 110 111
28: 112 113 114 115
29: 116 117 118 119
30: 120 121 122 123
31: 124 125 126 127
memcpy done
mask -1
[0, 0] 0 32 64 96
[1, 0] 1 33 65 97
[2, 0] 2 34 66 98
[3, 0] 3 35 67 99
[4, 4] 4 36 68 100
[5, 4] 5 37 69 101
[6, 4] 6 38 70 102
[7, 4] 7 39 71 103
[8, 8] 8 40 72 104
[9, 8] 9 41 73 105
[10, 8] 10 42 74 106
[11, 8] 11 43 75 107
[12, 12] 12 44 76 108
[13, 12] 13 45 77 109
[14, 12] 14 46 78 110
[15, 12] 15 47 79 111
[16, 16] 16 48 80 112
[17, 16] 17 49 81 113
[18, 16] 18 50 82 114
[19, 16] 19 51 83 115
[20, 20] 20 52 84 116
[21, 20] 21 53 85 117
[22, 20] 22 54 86 118
[23, 20] 23 55 87 119
[24, 24] 24 56 88 120
[25, 24] 25 57 89 121
[26, 24] 26 58 90 122
[27, 24] 27 59 91 123
[28, 28] 28 60 92 124
[29, 28] 29 61 93 125
[30, 28] 30 62 94 126
[31, 28] 31 63 95 127
[0, 0] 0 8 16 24
[1, 0] 32 40 48 56
[2, 0] 64 72 80 88
[3, 0] 96 104 112 120
[4, 4] 1 9 17 25
[5, 4] 33 41 49 57
[6, 4] 65 73 81 89
[7, 4] 97 105 113 121
[8, 8] 2 10 18 26
[9, 8] 34 42 50 58
[10, 8] 66 74 82 90
[11, 8] 98 106 114 122
[12, 12] 3 11 19 27
[13, 12] 35 43 51 59
[14, 12] 67 75 83 91
[15, 12] 99 107 115 123
[16, 16] 4 12 20 28
[17, 16] 36 44 52 60
[18, 16] 68 76 84 92
[19, 16] 100 108 116 124
[20, 20] 5 13 21 29
[21, 20] 37 45 53 61
[22, 20] 69 77 85 93
[23, 20] 101 109 117 125
[24, 24] 6 14 22 30
[25, 24] 38 46 54 62
[26, 24] 70 78 86 94
[27, 24] 102 110 118 126
[28, 28] 7 15 23 31
[29, 28] 39 47 55 63
[30, 28] 71 79 87 95
[31, 28] 103 111 119 127
0 : 0 32 64 96
1 : 1 33 65 97
2 : 2 34 66 98
3 : 3 35 67 99
4 : 4 36 68 100
5 : 5 37 69 101
6 : 6 38 70 102
7 : 7 39 71 103
8 : 8 40 72 104
9 : 9 41 73 105
10: 10 42 74 106
11: 11 43 75 107
12: 12 44 76 108
13: 13 45 77 109
14: 14 46 78 110
15: 15 47 79 111
16: 16 48 80 112
17: 17 49 81 113
18: 18 50 82 114
19: 19 51 83 115
20: 20 52 84 116
21: 21 53 85 117
22: 22 54 86 118
23: 23 55 87 119
24: 24 56 88 120
25: 25 57 89 121
26: 26 58 90 122
27: 27 59 91 123
28: 28 60 92 124
29: 29 61 93 125
30: 30 62 94 126
31: 31 63 95 127
========= ERROR SUMMARY: 0 errors
$
Я считаю, что приведенный выше код довольно четко демонстрирует транспонирование 32x4 -> 4x32.Я думаю, что это «ближе всего» к коду, который вы представили.Он не выполняет набор транспозиций 4x8, который вы изображали на своих диаграммах.
Я признаю, что вычисления src_corr
, src_lane
и dest
не полностью оптимизированы.Но они генерируют правильную индексацию.Я предполагаю, что вы можете решить, как оптимально генерировать их из шаблонов, которые у вас уже есть.
Я думаю, что вполне возможно, что в приведенном выше коде есть ошибки для других измерений.Я не пробовал это ни на чем кроме случая 32x4Тем не менее, я думаю, что указал, что в корне не так с вашим кодом, и продемонстрировал путь к правильной индексации.